9.函數(shù)$f(x)=\frac{1}{{{2^x}+1}}+a$為奇函數(shù),則實(shí)數(shù)a=$-\frac{1}{2}$;函數(shù)f(x)在[1,3]上的值域?yàn)?[-\frac{7}{18},-\frac{1}{6}]$.

分析 由定義知實(shí)數(shù)的奇函數(shù)滿足f(0)=0求得a值;把求得的a值代入函數(shù)解析式,由x的范圍求出2x+1的范圍,然后求得函數(shù)值域.

解答 解:∵函數(shù)f(x)為奇函數(shù),且函數(shù)$f(x)=\frac{1}{{{2^x}+1}}+a$的定義域?yàn)镽,
∴f(0)=$\frac{1}{{2}^{0}+1}+a=\frac{1}{2}+a=0$,解得a=-$\frac{1}{2}$;
則$f(x)=\frac{1}{{2}^{x}+1}-\frac{1}{2}$,
當(dāng)1≤x≤3時(shí),3≤2x+1≤9,
∴$\frac{1}{9}≤\frac{1}{{2}^{x}+1}≤\frac{1}{3}$,
則$-\frac{7}{18}≤\frac{1}{{2}^{x}+1}-\frac{1}{2}≤-\frac{1}{6}$,
∴函數(shù)f(x)在[1,3]上的值域?yàn)?[-\frac{7}{18},-\frac{1}{6}]$.
故答案為:$-\frac{1}{2}$;$[-\frac{7}{18},-\frac{1}{6}]$.

點(diǎn)評(píng) 本題考查函數(shù)奇偶性的性質(zhì),考查函數(shù)值域的求法,考查不等式的性質(zhì),是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一組數(shù)據(jù)x1,x2,…,x5的平均數(shù)為5,x${\;}_{1}^{2}$,x${\;}_{2}^{2}$,…,x${\;}_{5}^{2}$的平均數(shù)為33,則數(shù)據(jù)x1,x2,…,x5的方差為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在(x-y)n展開式中,偶數(shù)項(xiàng)的系數(shù)之和為-256.
求(1)n;
(2)系數(shù)的最大和最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{3}$)兩條相鄰的對稱軸之間的距離為$\frac{π}{2}$,若其圖象向右平移$\frac{π}{3}$個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)( 。
A.關(guān)于點(diǎn)($\frac{π}{12}$,0)對稱B.關(guān)于點(diǎn)($\frac{5π}{12}$,0)對稱
C.關(guān)于直線x=$\frac{5π}{12}$對稱D.關(guān)于直線x=$\frac{π}{12}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系.已知曲線C:ρsin2θ=2acosθ(a>0),過點(diǎn)P(-1,2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t是參數(shù)),直線l與曲線C分別交于M,N兩點(diǎn).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.圓柱形玻璃杯高8cm,杯口周長為12cm,內(nèi)壁距杯口2cm的點(diǎn)A處有一點(diǎn)蜜糖.A點(diǎn)正對面的外壁(不是A點(diǎn)的外壁)距杯底2cm的點(diǎn)B處有一小蟲.若小蟲沿杯壁爬向蜜糖飽食一頓,最少要爬多少10cm.(不計(jì)杯壁厚度與小蟲的尺寸)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如右圖,三棱錐A-BCD中,所有棱長都為2,點(diǎn)E、F分別是AB,AD中點(diǎn),則$\overrightarrow{EF}•\overrightarrow{BC}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在四棱錐E-ABCD中,底面ABCD是邊長為1的正方形,AC與BD交于點(diǎn)O,EC⊥底面ABCD,F(xiàn)為BE的中點(diǎn).
(Ⅰ)求證:DE∥平面ACF;
(Ⅱ)求證:BD⊥AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)$y=\frac{4-cosx}{2cosx+3}$的值域?yàn)?[\frac{3}{5},5]$.

查看答案和解析>>

同步練習(xí)冊答案