解答:
解:(I)由題意當(dāng)x=0時(shí),f(0)=c-1=1,∴c=2,
當(dāng)x<1時(shí),f'(x)=-2e
2x+b,
依題意得f'(0)=-2e
0+b=0,∴b=2,
經(jīng)檢驗(yàn)
符合條件.
(Ⅱ)由(I)知,
f(x)= | -e2x+2x+2,x≤1 | a(x2lnx-x+1)+1,x>1 |
| |
①當(dāng)-2≤x≤1時(shí),f(x)=-e
2x+2x+2,f'(x)=-2e
2x+2,
令f'(x)=0得x=0,
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:
x | -2 | (-2,0) | 0 | (0,1) | 1 |
f'(x) | | + | 0 | - | |
f(x) | -e-4-2 | 遞增 | 極大值1 | 遞減 | 4-e2 |
由上表可知f(x)在[-2,1]上的最大值為1.
②當(dāng)1<x≤2時(shí),f(x)=a(x
2lnx-x+1)+1,f'(x)=a(2xlnx+x-1),
令g(x)=2xlnx+x-1,
當(dāng)1<x≤2時(shí),顯然g(x)>0恒成立,
當(dāng)a<0時(shí),f'(x)=a(2xlnx+x-1)<0,f(x)在(1,2]單調(diào)遞減,
∴f(x)<f(1)=1恒成立.
此時(shí)函數(shù)在[-2,2]上的最大值為1;
當(dāng)a=0時(shí),在(1,2]上f(x)=1,
當(dāng)a>0時(shí),在(1,2]上f'(x)=a(2xlnx+x-1)>0,
∴在(1,2]上,函數(shù)f(x)為單調(diào)遞增函數(shù).
∴f(x)在(1,2]最大值為a(4ln2-1)+1,
∵a(4ln2-1)+1>1,
∴函數(shù)f(x)在[-2,2]上最大值為a(4ln2-1)+1.
綜上:當(dāng)a≤0時(shí),f(x)在[-2,2]上的最大值為1;
當(dāng)a>0時(shí),f(x)在[-2,2]最大值為a(4ln2-1)+1.