【題目】一天,甲拿出一個裝有三張卡片的盒子(一張卡片的兩面都是綠色,一張卡片的兩面都是藍色,還有一張卡片一面是綠色,另一面是藍色),跟乙說玩一個游戲,規(guī)則是:甲將盒子里的卡片順序打亂后,由乙隨機抽出一張卡片放在桌子上,然后卡片朝下的面的顏色決定勝負,如果朝下的面的顏色與朝上的面的顏色一致,則甲贏,否則甲輸.乙對游戲的公平性提出了質(zhì)疑,但是甲說:“當(dāng)然公平!你看,如果朝上的面的顏色為綠色,則這張卡片不可能兩面都是藍色,因此朝下的面要么是綠色,要么是藍色,因此,你贏的概率為,我贏的概率也是,怎么不公平?”分析這個游戲是否公平.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)a>b>0,試比較與的大。
(2)若關(guān)于x的不等式(2x-1)2<ax2的解集中整數(shù)恰好有3個,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有個小球,甲、乙兩位同學(xué)輪流且不放回抓球,每次最少抓1個球,最多抓3個球,規(guī)定誰抓到最后一個球贏.如果甲先抓,那么下列推斷正確的是_____________.(填寫序號)
①若,則甲有必贏的策略; ②若,則乙有必贏的策略;
③若,則甲有必贏的策略; ④若,則乙有必贏的策略.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是城市慢行系統(tǒng)的一種創(chuàng)新模式,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20 000元,每生產(chǎn)一輛新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù) 其中x是新樣式單車的月產(chǎn)量(單位:輛),利潤=總收益-總成本.
(1)試將自行車廠的利潤y元表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司決定每月給推銷員確定個具體的銷售目標(biāo),對推銷員實行目標(biāo)管理.銷售目標(biāo)確定的適當(dāng)與否,直接影響公司的經(jīng)濟效益和推銷員的工作積極性,為此,該公司當(dāng)月隨機抽取了50位推銷員上個月的月銷售額(單位:萬元),繪制成如圖所示的頻率分布直方圖.
(1)①根據(jù)圖中數(shù)據(jù),求出月銷售額在小組內(nèi)的頻率.
②根據(jù)直方圖估計,月銷售目標(biāo)定為多少萬元時,能夠使70%的推銷員完成任務(wù)?并說明理由.
(2)該公司決定從月銷售額為和的兩個小組中,選取2位推銷員介紹銷售經(jīng)驗,求選出的推銷員來自同一個小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場調(diào)查,某門市部的一種小商品在過去的20天內(nèi)的日銷售量(件)與價格(元)均為時間(天)的函數(shù),且日銷售量近似滿足函數(shù)(件),而且銷售價格近似滿足于(元).
(1)試寫出該種商品的日銷售額與時間的函數(shù)表達式;
(2)求該種商品的日銷售額的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型水果超市每天以元/千克的價格從水果基地購進若干水果,然后以元/千克的價格出售,若有剩余,則將剩下的水果以元/千克的價格退回水果基地,為了確定進貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:
日需求量 | |||||||
頻數(shù) |
以天記錄的各日需求量的頻率代替各日需求量的概率.
(1)求該超市水果日需求量(單位:千克)的分布列;
(2)若該超市一天購進水果千克,記超市當(dāng)天水果獲得的利潤為(單位:元),求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)的焦距為2.
(1)若橢圓C經(jīng)過點(,1),求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A(﹣2,0),F為橢圓C的左焦點,若橢圓C上存在點P,滿足,求橢圓C的離心率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com