1.如圖,在四邊形ABCD中,AB=3,BC=7$\sqrt{3}$,CD=14,BD=7,∠BAD=120°.
(1)求AD邊的長;
(2)求△ABC的面積.

分析 (1)在△ABD中,由已知及余弦定理即可解得AD的值.
(2)利用勾股定理可求∠CBD=90°,利用余弦定理可求cos∠ABD的值,利用誘導(dǎo)公式可求sin∠ABC,進(jìn)而利用三角形面積公式即可計(jì)算得解.

解答 解:(1)在△ABD中,由余弦定理,
可得:BD2=AB2+AD2-2AB•AD•cos120°,
即:72=32+AD2-2×$3×AD×(-\frac{1}{2})$,
解得:AD=5或-8(舍去),
故AD=5.
(2)由已知,BC2+BD2=CD2,
所以,∠CBD=90°,
在△ABD中,由余弦定理,得$cos∠ABD=\frac{{A{B^2}+B{D^2}-A{D^2}}}{2AB•BD}=\frac{{{3^2}+{7^2}-{5^2}}}{2×3×7}=\frac{11}{14}$,
所以$sin∠ABC=sin({∠ABD+90°})=cos∠ABD=\frac{11}{14}$,
所以${S_{△ABC}}=\frac{1}{2}AB•BC•sin∠ABC=\frac{1}{2}×3×7\sqrt{3}×\frac{11}{14}=\frac{{33\sqrt{3}}}{4}$.

點(diǎn)評(píng) 本題主要考查了余弦定理,勾股定理,誘導(dǎo)公式,三角形面積公式在解三角形中的應(yīng)用,考查了數(shù)形結(jié)合思想和計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.橢圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1和雙曲線$\frac{x^2}{4}$-$\frac{y^2}{5}$=1共同焦點(diǎn)為F1,F(xiàn)2,若P是兩曲線的一個(gè)交點(diǎn),則$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$的值為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.(x2+x+1)(x-2)8=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10則a1+a2+…+a10=( 。
A.-3B.3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}的前n和為Sn,若${S_n}={n^2}-2n$,則a4+a5=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)在所給的平面直角坐標(biāo)系內(nèi),畫出函數(shù)f(x)=x2-2x(x∉R)的圖象,根據(jù)圖象寫出函數(shù)f(x)的單調(diào)遞減區(qū)間并用定義證明;
(2)求函數(shù)f(x)=x2-2x,x∈[a,a+1](其中a為實(shí)數(shù))的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在邊長為1的正方形ABCD中,E,F(xiàn)分別是邊BC,DC上的點(diǎn),且$\overrightarrow{BE}=\frac{1}{4}\overrightarrow{BC}$,$\overrightarrow{DF}=-\overrightarrow{CF}$,則$\overrightarrow{AE}•\overrightarrow{AF}$=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|ax2-8x|(a>0).
(1)當(dāng)a≤8時(shí),求函數(shù)f(x)在區(qū)間[-1,1]上的最大值;
(2)設(shè)b∈R,若存在實(shí)數(shù)a,使得函數(shù)y=|f(x)-2|在區(qū)間[0,b]上單調(diào)遞減,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過F2的直線交橢圓于P,Q兩點(diǎn),若∠F1PQ=45°,|PQ|=$\sqrt{2}|P{F_1}|$,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$-1D.2-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1,直角△ACD中,AD=2AC,AB是斜邊上的高,BE⊥AC,BF⊥AD,沿AB將△ACD折成棱錐A-BCD(圖2),且CD⊥BC.

(Ⅰ) DC⊥BE;
(Ⅱ) 求BF與平面ACD所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案