【題目】如圖,正方形與梯形所在的平面互相垂直, , ,點是線段的中點.

(1)求證: ;

(2)求平面與平面所成銳二面角的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析:三角形中位線定理可得,,即可證明是平行四邊形,再利用線面平行的判定定理即可證明;

建立空間直角坐標系,用坐標表示點與向量,求出的坐標,求得平面和平面的法向量,設平面與平面所成銳二面角為,用空間向量求得平面內的夾角即可得到答案

解析:(1)證明:取中點,連,且

是平行四邊形,∴

平面, 平面,∴平面

(2)如圖,建立空間直角坐標系,

因為點是線段的中點,

, ,

.

是平面的法向量,

.

,得,

即得平面的一個法向量為.

由題可知, 是平面的一個法向量.

設平面與平面所成銳二面角為

因此, .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】無窮數(shù)列個不同的數(shù)組成, 的前項和,若對任意的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北京大學從參加逐夢計劃自主招生考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六組 , 后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

1)求分數(shù)在內的頻率;

2)估計本次考試成績的中位數(shù)(結果四舍五入,保留整數(shù));

3)用分層抽樣的方法在分數(shù)段為的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有人在分數(shù)段內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面為直角梯形, 平面,側面是等腰直角三角形, , ,點是棱的中點.

(1)證明:平面平面;

(2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中, 的兩個頂點的坐標分別為,三個內角滿足.

(1)若頂點的軌跡為,求曲線的方程;

(2)若點為曲線上的一點,過點作曲線的切線交圓于不同的兩點(其中的右側),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某禮品店要制作一批長方體包裝盒,材料是邊長為的正方形紙板.如圖所示,先在其中相鄰兩個角處各切去一個邊長是的正方形,然后在余下兩個角處各切去一個長、寬分別為的矩形,再將剩余部分沿圖中的虛線折起,做成一個有蓋的長方體包裝盒.

(1)求包裝盒的容積關于的函數(shù)表達式,并求函數(shù)的定義域;

(2)為多少時,包裝盒的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為實數(shù),函數(shù)

(1)若,求的取值范圍;

(2)討論的單調性;

(3)當時,討論在區(qū)間內的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的前項和為

)證明數(shù)列是等比數(shù)列,求出數(shù)列的通項公式.

)設,求數(shù)列的前項和

)數(shù)列中是否存在三項,它們可以構成等比數(shù)列?若存在,求出一組符合條件的項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)當時,求函數(shù)的最大值;

2)令,其圖象上存在一點,使此處切線的斜率,求實數(shù)的取值范圍;

(3)當 時,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

同步練習冊答案