【題目】北京大學從參加逐夢計劃自主招生考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六組, ,…, 后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分數(shù)在內(nèi)的頻率;
(2)估計本次考試成績的中位數(shù)(結(jié)果四舍五入,保留整數(shù));
(3)用分層抽樣的方法在分數(shù)段為的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有人在分數(shù)段內(nèi)的概率.
【答案】(1)0.3;(2)123;(3) .
【解析】試題分析:(1)根據(jù)頻率分布直方圖的各小長方形的面積之和為,可求出分數(shù)在內(nèi)的頻率;(2)利用中位數(shù)的兩邊面積相等可估計本次考試成績的中位數(shù);(3)計算出與分數(shù)段的人數(shù),用分層抽樣的方法在各分數(shù)段內(nèi)抽取的人數(shù)組成樣本,列舉出“從樣本中任取人”的事件個數(shù)以及“從樣本中任取人,至多有人在分數(shù)段內(nèi)”的事件個數(shù),利用古典概型概率公式概率可得結(jié)果.
試題解析:(1)分數(shù)在[120,130)內(nèi)的頻率為
1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3.
(2)估計本次考試成績的中位數(shù)為
(3)由題意,[110,120)分數(shù)段的人數(shù)為60×0.15=9(人).
在[120,130)分數(shù)段的人數(shù)為60×0.3=18(人).
∵用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,
∴需在[110,120)分數(shù)段內(nèi)抽取2人,并分別記為m,n;
在[120,130)分數(shù)段內(nèi)抽取4人,并分別記為a,b,c,d;設“從樣本中任取2人,至多有1人在分數(shù)段[120,130)內(nèi)”為事件A,則基本事件共有{m,n},{m,a},…,{m,d},{n,a},…,{n,d},{a,b},…,{c,d},共15個.
則事件A包含的基本事件有{m,n},{m,a},{m,b},{m,c},{m,d},{n,a},{n,b},{n,c},{n,d},共9個.
∴P(A)==.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)若對,f(x) 恒成立,求的取值范圍;
(2)已知常數(shù)aR,解關(guān)于x的不等式f(x) .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得=80, =20, =184, =720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關(guān)還是負相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
附:線性回歸方程y=bx+a中, ,a=-b,其中, 為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—5:不等式選講
已知函數(shù)(x)=|2x-a|+ |x -1|.
(Ⅰ)當a=3時,求不等式(x)≥2的解集;
(Ⅱ)若(x)≥5-x對恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線過橢圓的右焦點且與橢圓交于兩點, 為中點, 的斜率為.
(1)求橢圓的方程;
(2)設是橢圓的動弦,且其斜率為1,問橢圓上是否存在定點,使得直線的斜率滿足?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項等比數(shù)列{an}(n∈N*),首項a1=3,前n項和為Sn,且S3+a3、S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{nan}的前n項和為Tn,若對任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com