【題目】已知函數(shù)

(Ⅰ)當時,求函數(shù)在區(qū)間上的最小值;

(Ⅱ)當時,求證:過點恰有2條直線與曲線相切.

【答案】I.(Ⅱ)見解析.

【解析】

I)對fx)求導,判斷f′(x)的符號得出fx)的單調(diào)性,根據(jù)單調(diào)性得出fx)的最小值;(II)設(shè)過P的切線的切點為(x0y0),根據(jù)導數(shù)的幾何意義列出方程組,得出關(guān)于x0的方程,利用函數(shù)單調(diào)性證明此方程恰好有兩解即可.

(Ⅰ)當a3時,fx)=x33x2,f'x)=3x26x3xx2).

x[0,2]時,f'x)≤0

所以fx)在區(qū)間[0,2]上單調(diào)遞減.

所以fx)在區(qū)間[02]上的最小值為f2)=﹣4

(Ⅱ)設(shè)過點P1,f1))的曲線yfx)的切線切點為(x0,y0),f'x)=3x22axf1)=1a,

所以

所以

gx)=2x3﹣(a+3x2+2ax+1a

g'x)=6x22a+3x+2a=(x1)(6x2a),

g'x)=0x1

因為a3,所以

x

(﹣∞,1

1

g′(x

+

0

0

+

gx

極大值

極小值

gx)的極大值為g1)=0gx)的極小值為,

所以gx)在上有且只有一個零點x1

因為ga)=2a3﹣(a+3a2+2a2+1a=(a12a+1)>0

所以gx)在上有且只有一個零點.

所以gx)在R上有且只有兩個零點.

即方程有且只有兩個不相等實根,

所以過點P1f1))恰有2條直線與曲線yfx)相切.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為.

(1)求曲線與直線的直角坐標方程.

(2)直線軸的交點為,與曲線的交點為,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,、是離心率為的橢圓的左、右焦點,過軸的垂線交橢圓所得弦長為,設(shè)是橢圓上的兩個動點,線段的中垂線與橢圓交于兩點,線段的中點的橫坐標為1.

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】423日是世界讀書日,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調(diào)查,下圖是根據(jù)調(diào)查結(jié)果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學生稱為讀書謎,低于60分鐘的學生稱為非讀書謎”.

1)求的值并估計全校3000名學生中讀書謎大概有多少名?(將頻率視為概率)

2)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認為讀書謎與性別有關(guān)?

非讀書迷

讀書迷

合計

40

25

合計

:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)表示不大于實數(shù)的最大整數(shù),函數(shù),若關(guān)于的方程有且只有5個解,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了推動數(shù)學教學方法的改革,學校將高一年級部分生源情況基本相同的學生分成甲乙兩個班,每班各40人,甲班按原有模式教學,乙班實施教學方法改革.經(jīng)過一年的教學實驗,將甲乙兩個班學生一年來的數(shù)學成績?nèi)∑骄鶖?shù),兩個班學生的平均成績均在,按照區(qū)間,,進行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80(百分制)為優(yōu)秀.

1)完成表格,并判斷是否有90%以上的把握認為數(shù)學成績優(yōu)秀與教學改革有關(guān);

甲班

乙班

總計

大于等于80分的人數(shù)

小于80分的人數(shù)

總計

2)從乙班分數(shù)段中,按分層抽樣隨機抽取7名學生座談,從中選三位同學發(fā)言,記來自發(fā)言的人數(shù)為隨機變量,求的分布列和期望.:

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“一本書,一碗面,一條河,一座橋”曾是蘭州的城市名片,而現(xiàn)在“蘭州馬拉松”又成為了蘭州的另一張名片,隨著全民運動健康意識的提高,馬拉松運動不僅在蘭州,而且在全國各大城市逐漸興起,參與馬拉松訓練與比賽的人口逐年增加.為此,某市對人們參加馬拉松運動的情況進行了統(tǒng)計調(diào)查.其中一項調(diào)查是調(diào)查人員從參與馬拉松運動的人中隨機抽取200人,對其每周參與馬拉松長跑訓練的天數(shù)進行統(tǒng)計,得到以下統(tǒng)計表:

平均每周進行長跑訓練天數(shù)

不大于2

3天或4

不少于5

人數(shù)

30

130

40

若某人平均每周進行長跑訓練天數(shù)不少于5天,則稱其為“熱烈參與者”,否則稱為“非熱烈參與者”.

1)經(jīng)調(diào)查,該市約有2萬人參與馬拉松運動,試估計其中“熱烈參與者”的人數(shù);

2)根據(jù)上表的數(shù)據(jù),填寫下列2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“熱烈參與馬拉松”與性別有關(guān)?

熱烈參與者

非熱烈參與者

合計

140

55

合計

附:k2=n為樣本容量)

Pk2k0

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點,面平面ABCD.

1)證明:平面BDE

2)若為等邊三角形,,三棱錐的體積為,求四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在小正方形邊長為1的網(wǎng)格中畫出了某多面體的三視圖,則該多面體的外接球表面積為______

查看答案和解析>>

同步練習冊答案