13.一個(gè)圓臺(tái)的上、下兩個(gè)底面圓的半徑分別為1和4,其母線長為3$\sqrt{2}$,則該圓臺(tái)的體積為21π.

分析 根據(jù)圓臺(tái)的上、下兩個(gè)底面圓的半徑分別為1和4,其母線長為3$\sqrt{2}$,求得圓臺(tái)的高h(yuǎn),代入臺(tái)體的體積公式計(jì)算即可.

解答 解:∵圓臺(tái)的上、下兩個(gè)底面圓的半徑分別為1和4,其母線長為3$\sqrt{2}$,
∴圓臺(tái)的高h(yuǎn)=3,
∴圓臺(tái)的體積V=$\frac{1}{3}$(S′+S+$\sqrt{SS′}$)h=$\frac{1}{3}π$×(12+42+1×4)×3=21π.
故答案為:21π.

點(diǎn)評(píng) 本題考查了圓臺(tái)的體積公式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,|MN|=5,則f(x)=2sin($\frac{π}{3}$x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知命題P:若冪函數(shù)f(x)=xa過點(diǎn)(2,8).實(shí)數(shù)t滿足f(2-t)>f(t-1),命題Q:實(shí)數(shù)t滿足2t-1>1,P與Q有且僅有一個(gè)為真,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.社會(huì)調(diào)查表明,家庭月收入x(單位:千元)與月儲(chǔ)蓄y(單位:千元)具有線性相關(guān)關(guān)系,隨機(jī)抽取了10個(gè)家庭,獲得第i個(gè)家庭的月收入與月儲(chǔ)蓄數(shù)據(jù)資料,算得$\sum_{i=1}^{10}$xi=60,$\sum_{i=1}^{10}$yi=15,$\sum_{i=1}^{10}$xiyi=180,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=540.
(Ⅰ)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)若某家庭月收入為5千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
參考公式:線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在Rt△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,AB=2,DB=1,則DC=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)(3x-1)15=a0+a1x+a2x2+…+akxk…+a14x14+a15x15求:
(1)$\sum_{k=0}^{15}$ak;
(2)a4+a6+a8+a10+a12+a14
(3)$\sum_{k=0}^{15}$(k+1)ak

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)z滿足$\frac{1-i}{z-2}$=1+i,則z在復(fù)平面內(nèi)的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在平面直角坐標(biāo)系中,-1445°是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=cosx的導(dǎo)數(shù)是( 。
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

同步練習(xí)冊(cè)答案