分析 (1)以D為原點,DE為x軸,DC為y軸,過D作平面BCDE的垂線為z軸,建立空間直角坐標系,利用向量法能求出$\frac{DF}{FC}$的比值.
(2)求出平面PBC的法向量和平面PBE的法向量,利用向量法能求出二面角E-PB-C的余弦值.
解答 解:(1)以D為原點,DE為x軸,DC為y軸,過D作平面BCDE的垂線為z軸,
建立空間直角坐標系,
P(4,2,2$\sqrt{2}$),B(6,4,0),E(2,0,0),設(shè)F(0,t,0),
$\overrightarrow{PB}$=(2,2,-2$\sqrt{2}$),$\overrightarrow{PE}$=(-2,-2,-2$\sqrt{2}$),$\overrightarrow{PF}$=(-4,t-2,-2$\sqrt{2}$),
設(shè)平面PBE的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=2x+2y-2\sqrt{2}z=0}\\{\overrightarrow{n}•\overrightarrow{PE}=-2x-2y-2\sqrt{2}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,0),
設(shè)平面PEF的法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PE}=-2a-2b-2\sqrt{2}c=0}\\{\overrightarrow{m}•\overrightarrow{PF}=-4a+(t-2)b-2\sqrt{2}c=0}\end{array}\right.$,取b=2,得$\overrightarrow{m}$=(t,2,-$\frac{t+2}{\sqrt{2}}$),
∵平面PBE⊥平面PEF,
∴$\overrightarrow{n}•\overrightarrow{m}$=t-2=0,解得t=2.
∴DF=2,F(xiàn)C=4-2=2,
∴$\frac{DF}{FC}$=1.
(2)C(0,4,0),$\overrightarrow{PB}$=(2,2,-2$\sqrt{2}$),$\overrightarrow{PC}$=(-4,2,-2$\sqrt{2}$),
設(shè)平面PBC的法向量$\overrightarrow{p}$=(x1,y1,z1),
則$\left\{\begin{array}{l}{\overrightarrow{p}•\overrightarrow{PB}=2x+2y-2\sqrt{2}z=0}\\{\overrightarrow{p}•\overrightarrow{PC}=-4x+2y-2\sqrt{2}z=0}\end{array}\right.$,取y=$\sqrt{2}$,得$\overrightarrow{p}$=(0,$\sqrt{2}$,1),
由(1)得平面PBE的法向量$\overrightarrow{n}$=(1,-1,0),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{-\sqrt{2}}{\sqrt{3}•\sqrt{2}}$=-$\frac{\sqrt{3}}{3}$,
由圖形得二面角E-PB-C的平面角為銳角,
∴二面角E-PB-C的余弦值為$\frac{\sqrt{3}}{3}$.
點評 本題考查兩線段比值的求法,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 10 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com