已知x>0,y>0且滿足
2
x
+
8
y
=1,則x+y的最小值為
 
考點(diǎn):基本不等式
專(zhuān)題:不等式的解法及應(yīng)用
分析:利用“乘1法”和基本不等式的性質(zhì)即可得出.
解答: 解:∵x>0,y>0且滿足
2
x
+
8
y
=1,
∴x+y=(x+y)(
2
x
+
8
y
)
=10+2
2y
x
8x
y
=18,當(dāng)且僅當(dāng)y=2x=12時(shí)取等號(hào).
∴x+y的最小值為18.
故答案為:18.
點(diǎn)評(píng):本題考查了“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示.△ABC中,∠B=90°,M為AB上一點(diǎn),使得AM=BC,N為BC上一點(diǎn),
使得CN=BM,連AN,CM交于P點(diǎn).求∠APM的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約束條件
y≤2
x+y≥1
x-y≤1
,則z=3x+y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,O是BD1中點(diǎn),A1C交平面AB1D1于M.則以下說(shuō)法中:
(1)A1,M,O共線;
(2)A1,M,O,A共面;
(3)A,O,C,M共面;
(4)B,B1,O,M共面.
其中說(shuō)法正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x3
2
+
(1+x)3
2
在0≤x≤1范圍內(nèi)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=3,若
OC
=
1
2
OA
,
OD
=
1
2
OB
,AD與BC交于點(diǎn)P,則
OP
AB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于正四面體ABCD,有以下命題:
①正三棱錐都是正四面體;
②若E,F(xiàn)分別為△ABC,△BCD的中心,則EF∥AD;
③AB⊥CD;
④將等差數(shù)列的任意連續(xù)四項(xiàng)分別寫(xiě)在四面體的四個(gè)面上,則任一面上的數(shù)字都不可能等于另三個(gè)面上的數(shù)字之和;
⑤從正四面體的六條棱中任選兩條,則它們互相垂直的概率為
1
5

其中正確的命題有
 
(填上所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:長(zhǎng)方體ABCD-A1B1C1D1中,AB=3,AD=AA1=2,E為AB上一點(diǎn),且AE=2EB,F(xiàn)為CC1的中點(diǎn),P為C1D1上動(dòng)點(diǎn),當(dāng)EF⊥CP時(shí),PC1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex+x,g(x)=lnx+x,h(x)=x-
1
4x
的零點(diǎn)依次為a,b,c,則( 。
A、c<b<a
B、a<b<c
C、c<a<b
D、b<a<c

查看答案和解析>>

同步練習(xí)冊(cè)答案