5.設(shè)函數(shù)f(x)=loga$\frac{ax-5}{{{x^2}-a}}$的定義域?yàn)锳,若3∉A,5∈A,則a的取值范圍為$1<a≤\frac{5}{3}或9≤a<25$.

分析 利用函數(shù)的定義域,列出不等式組,化簡(jiǎn)求解即可.

解答 解:函數(shù)f(x)=loga$\frac{ax-5}{{{x^2}-a}}$的定義域?yàn)锳,可得$\frac{ax-5}{{{x^2}-a}}$>0,3∉A,5∈A,可得$\left\{\begin{array}{l}{\frac{3a-5}{9-a}≤0}\\{\frac{5a-5}{25-a}>0}\end{array}\right.$,或9-a=0,解得$1<a≤\frac{5}{3}或9≤a<25$.
故答案為:$1<a≤\frac{5}{3}或9≤a<25$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的定義域,分式不等式的解法,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)集合A={x|x-3>0},B={x|x2-5x+4<0},則A∩B=( 。
A.B.(3,4)C.(-2,1)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{e}^{x}}{{e}^{m}}$-lnx.
(Ⅰ)設(shè)x=1是函數(shù)f(x)的極值點(diǎn),求m的值并討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)m≤-2時(shí),證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=x2-$\frac{1}{2}$x+$\frac{1}{4}$,若數(shù)列{bn}滿足:b1=1,bn+1=2f(bn)(n∈N*).若對(duì)?n∈N*,都?M∈Z,使得$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{n}}$<M恒成立,則整數(shù)M的最小值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,(a>b>0),F(xiàn)1,F(xiàn)2分別為橢圓的左,右焦點(diǎn),如圖過(guò)F2且斜率為1的直線與橢圓相交于P,Q兩點(diǎn),且$\frac{{|P{F_2}|}}{{|Q{F_2}|}}$=2,則橢圓的離心率e=( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn),則直線AE與平面A1ED1所成的角的大小為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)圓C:x2+y2-2(t+3)x-2ty+t2+4t+8=0(t≠-1).
(1)當(dāng)t變化時(shí),圓心C是否在同一直線上?若在同一直線上,請(qǐng)寫(xiě)出該直線方程;若不在,請(qǐng)說(shuō)明理由;
(2)設(shè)直線l:x+y-3=0與圓C交于A,B,求弦AB的最大值;
(3)當(dāng)t變化時(shí),可得一系列圓,是否存在直線m與這些圓都相切?若存在,求出直線m的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)y=x3-3x2-9x(0<x<4)有(  )
A.極大值5,極小值-27B.極大值5,極小值-11
C.極大值5,無(wú)極小值D.極小值-27,無(wú)極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.下面有五個(gè)命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π
②若α,β均是第一象限的角,且α>β,則sinα>sinβ.
③函數(shù)f(x)=|sinx|是周期函數(shù)且周期是π.
④把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin2x的圖象.
⑤函數(shù)y=sin(x-$\frac{π}{2}$)在[0,π]上是單調(diào)遞減的.其中真命題的序號(hào)是①③④.

查看答案和解析>>

同步練習(xí)冊(cè)答案