【題目】廣東省2021年高考將實(shí)行“”模式,其最大特點(diǎn)就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、歷史這2科中自由選擇一門科目;化學(xué)、生物、政治、地理這4科中自由選擇兩門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對(duì)全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),從某學(xué)校高一年級(jí)的學(xué)生中隨機(jī)抽取男生、女生個(gè)25人進(jìn)行模擬選科.經(jīng)統(tǒng)計(jì),選擇全理的人數(shù)比不選全理的人數(shù)多10人.
(1)請(qǐng)完成下面的列聯(lián)表:
選擇全理 | 不選擇全理 | 合計(jì) | |
男生 | 5 | ||
女生 | |||
合計(jì) |
(2)估計(jì)有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由;
(3)現(xiàn)從這50名學(xué)生中已經(jīng)選取了男生3名,女生2名進(jìn)行座談,從這5人中抽取2名代表作問卷調(diào)查,求至少抽到一名女生的概率.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:,其中.
【答案】(1)列聯(lián)表見解析;(2)的把握認(rèn)為選擇全理與性別有關(guān),理由見解析;(3).
【解析】
(1)根據(jù)題意,結(jié)合題設(shè)中的數(shù)據(jù),即可得到的列聯(lián)表;
(2)利用公式,求得的值,即可求解;
(3)設(shè)3名男生分別為1,2,3,兩名女生分別為4,5.列出所有基本事件的個(gè)數(shù),利用古典概型的概率計(jì)算公式,即可求解.
(1)依題意可得的列聯(lián)表:
選擇全理 | 不選擇全理 | 合計(jì) | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計(jì) | 30 | 20 | 50 |
(2)由(1)中的數(shù)列,可得,
所以的把握認(rèn)為選擇全理與性別有關(guān).
(3)設(shè)3名男生分別為1,2,3,兩名女生分別為4,5.
從5名學(xué)生中抽取2名所有的可能為:共10種,
其中不包含女生的基本事件有,共3種,
故所求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)打算處理一批產(chǎn)品,這些產(chǎn)品每箱100件,以箱為單位銷售.已知這批產(chǎn)品中每箱出現(xiàn)的廢品率只有或者兩種可能,兩種可能對(duì)應(yīng)的概率均為0.5.假設(shè)該產(chǎn)品正品每件市場(chǎng)價(jià)格為100元,廢品不值錢.現(xiàn)處理價(jià)格為每箱8400元,遇到廢品不予更換.以一箱產(chǎn)品中正品的價(jià)格期望值作為決策依據(jù).
(1)在不開箱檢驗(yàn)的情況下,判斷是否可以購買;
(2)現(xiàn)允許開箱,有放回地隨機(jī)從一箱中抽取2件產(chǎn)品進(jìn)行檢驗(yàn).
①若此箱出現(xiàn)的廢品率為,記抽到的廢品數(shù)為,求的分布列和數(shù)學(xué)期望;
②若已發(fā)現(xiàn)在抽取檢驗(yàn)的2件產(chǎn)品中,其中恰有一件是廢品,判斷是否可以購買.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy下,曲線C1的參數(shù)方程為( 為參數(shù)),曲線C1在變換T:的作用下變成曲線C2.
(1)求曲線C2的普通方程;
(2)若m>1,求曲線C2與曲線C3:y=m|x|-m的公共點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:經(jīng)過點(diǎn),右焦點(diǎn)到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)定義為,兩點(diǎn)所在直線的斜率,若四邊形為橢圓的內(nèi)接四邊形,且,相交于原點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:經(jīng)過點(diǎn),右焦點(diǎn)到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)定義為,兩點(diǎn)所在直線的斜率,若四邊形為橢圓的內(nèi)接四邊形,且,相交于原點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列: 滿足: , 或1().對(duì)任意,都存在,使得.,其中 且兩兩不相等.
(I)若.寫出下列三個(gè)數(shù)列中所有符合題目條件的數(shù)列的序號(hào);
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)記.若,證明: ;
(Ⅲ)若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)水平及個(gè)人消費(fèi)能力的提升,我國居民對(duì)精神層面的追求愈加迫切,如圖是2007年到2017年我國城鎮(zhèn)居民教育、文化、服務(wù)人均消費(fèi)支出同比增速的折線圖,圖中顯示2007年的同比增速為10%, 即2007年與2006年同時(shí)期比較2007年的人均消費(fèi)支出費(fèi)用是2006年的1.1倍.則下列表述中正確的是( )
A.2007年到2017年,同比增速的中位數(shù)約為10%
B.2007年到2017年,同比增速的極差約為12%
C.2011年我國城鎮(zhèn)居民教育、文化、服務(wù)人均消費(fèi)支出的費(fèi)用最高
D.2007年到2017年,我國城鎮(zhèn)居民教育、文化、服務(wù)人均消費(fèi)支出的費(fèi)用逐年增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有高一學(xué)生兩人,高二學(xué)生兩人,高三學(xué)生一人,將這五人排成一行,要求同一年級(jí)的學(xué)生不能相鄰,則不同的排法總數(shù)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com