9.已知函數(shù)f(x)=cosx,x∈[0,2π]有兩個(gè)不同的零點(diǎn)x1、x2,且方程f(x)=m有兩個(gè)不同的實(shí)根x3、x4,若把這四個(gè)數(shù)按從小到大排列構(gòu)成等差數(shù)列,則實(shí)數(shù)m的值為-$\frac{\sqrt{3}}{2}$.

分析 由條件利用余弦函數(shù)的圖象求得x1、x2,再根據(jù)等差數(shù)列的定義和性質(zhì)求得x3、x4,從而求得m=sinx3的值.

解答 解:函數(shù)f(x)=cosx,x∈[0,2π]有兩個(gè)不同的零點(diǎn)x1、x2,
∴x1 =$\frac{π}{2}$,x2=$\frac{3π}{2}$.
∵方程f(x)=m有兩個(gè)不同的實(shí)根x3、x4,把這四個(gè)數(shù)按從小到大排列構(gòu)成等差數(shù)列,
∴x1+x2 =x3 +x4 =2π,故x1、x2 關(guān)于直線x=π對(duì)稱(chēng),x3、x4 關(guān)于直線x=π對(duì)稱(chēng).
故x1、x2 是等差數(shù)列的首項(xiàng)和末項(xiàng),x3、x4 分別是第二項(xiàng)和第三項(xiàng),
∴$\frac{3π}{2}$=$\frac{π}{2}$+3d,∴d=$\frac{π}{3}$,
∴x3=x1+d=$\frac{5π}{6}$,x4=x1+2d=$\frac{7π}{6}$,∴m=cos$\frac{5π}{6}$=-$\frac{\sqrt{3}}{2}$,
故答案為:-$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題主要考查余弦函數(shù)的圖象、等差數(shù)列的定義和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.(x-$\frac{1}{x}$)n的展開(kāi)式中只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,則n的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知圓O:x2+y2=r2(r>0),點(diǎn)P為圓O上任意一點(diǎn)(不在坐標(biāo)軸上),過(guò)點(diǎn)P作傾斜角互補(bǔ)的兩條直線分別交圓O于另一點(diǎn)A,B.
(1)當(dāng)直線PA的斜率為2時(shí),
①若點(diǎn)A的坐標(biāo)為(-$\frac{1}{5}$,-$\frac{7}{5}$),求點(diǎn)P的坐標(biāo);
②若點(diǎn)P的橫坐標(biāo)為2,且PA=2PB,求r的值;
(2)當(dāng)點(diǎn)P在圓O上移動(dòng)時(shí),求證:直線OP與AB的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,過(guò)焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為$\sqrt{2}$.
(1)已知點(diǎn)A,B是橢圓上兩點(diǎn),點(diǎn)C為橢圓的上頂點(diǎn),△ABC的重心恰好使橢圓的右焦點(diǎn)F,求A,B所在直線的斜率;
(2)過(guò)橢圓的右焦點(diǎn)F作直線l1、l2,直線l1與橢圓分別交于點(diǎn)M、N,直線l2與橢圓分別交于點(diǎn)P、Q,且|$\overrightarrow{MP}$|2+|$\overrightarrow{NQ}$|2=|$\overrightarrow{NP}$|2+|$\overrightarrow{MQ}$|2,求四邊形MPNQ的面積S最小時(shí)直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求證:當(dāng)一個(gè)圓和一個(gè)正方形的周長(zhǎng)相等時(shí),圓的面積比正方形的面積大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,F(xiàn)1,F(xiàn)2為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),D,E是橢圓的兩個(gè)頂點(diǎn),|F1F2|=2$\sqrt{3}$,|DE|=$\sqrt{5}$,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N($\frac{{x}_{0}}{a}$,$\frac{{y}_{0}}$)稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”.直線l與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,已知以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)試探討△AOB的面積S是否為定值?若為定值,求出該定值;若不為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.我國(guó)發(fā)射的天宮一號(hào)飛行器需要建造隔熱層.已知天宮一號(hào)建造的隔熱層必須使用20年,每厘米厚的隔熱層建造成本是6萬(wàn)元,天宮一號(hào)每年的能源消耗費(fèi)用C(萬(wàn)元)與隔熱層厚度x(厘米)滿足關(guān)系式:C(x)=$\frac{k}{3x+8}$(0≤x≤10),若無(wú)隔熱層(即x=0),則每年能源消耗費(fèi)用為5萬(wàn)元.設(shè)f(x)為隔熱層建造費(fèi)用與使用20年的能源消耗費(fèi)用之和.
(1)求C(x)和f(x)的表達(dá)式;
(2)當(dāng)隔熱層修建多少厘米厚時(shí),總費(fèi)用f(x)最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-\frac{1}{x},x≥2}\\{x,x<2}\end{array}\right.$,若使不等式f(x)<$\frac{8}{3}$成立,則x的取值范圍為{x|x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.三個(gè)圓有相同的半徑,都是3,圓心分別為(14,92)、(17,76)和(19,84).一條直線通過(guò)點(diǎn)(17,76),且位于它同一側(cè)的三個(gè)圓各部分的面積之和等于另一側(cè)三個(gè)圓各部分的面積之和,那么這條直線的斜率的絕對(duì)值為$\frac{8}{5}$或24.

查看答案和解析>>

同步練習(xí)冊(cè)答案