8.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線與拋物線x2=4y的準(zhǔn)線所圍成的三角形面積為2,則雙曲線的離心率為(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

分析 利用拋物線的準(zhǔn)線方程與雙曲線的漸近線方程,結(jié)合三角形的面積,推出雙曲線的離心率即可.

解答 解:拋物線x2=4y的準(zhǔn)線:y=-1,雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線與拋物線x2=4y的準(zhǔn)線所圍成的三角形面積為2,可得漸近線上的一個(gè)交點(diǎn)坐標(biāo)為:(2,-1).
雙曲線的漸近線方程為:bx+ay=0,
可得2b-a=0,可得4c2-4a2=a2,解得e=$\frac{\sqrt{5}}{2}$.
故選:A.

點(diǎn)評 本題考查拋物線以及雙曲線的簡單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知i是虛數(shù)單位,復(fù)數(shù)$\frac{1+3i}{1+i}$=( 。
A.2+iB.2-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若正實(shí)數(shù)x,y滿足(2xy-1)2=(5y+2)•(y-2),則$x+\frac{1}{2y}$的最大值為( 。
A.$-1+\frac{{3\sqrt{2}}}{2}$B.$-1+\frac{{3\sqrt{3}}}{2}$C.$1+\frac{{3\sqrt{3}}}{2}$D.$-1-\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}中,a2=8,前6項(xiàng)和和S6=66,設(shè)${b_n}=\frac{2}{{(n+1){a_n}}}$,Tn=b1+b2+…+bn,則Tn=( 。
A.$1-\frac{1}{n+1}$B.$1-\frac{1}{n+2}$C.$\frac{1}{2}-\frac{1}{n+1}$D.$\frac{1}{2}-\frac{1}{n+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在二項(xiàng)式(1-2x)6的展開式中,所有項(xiàng)的系數(shù)之和為a,若一個(gè)正方體的各個(gè)頂點(diǎn)均在同一球的球面上,且一個(gè)頂點(diǎn)上的三條棱長分別為2,3,a則此球的表面積為14π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知四棱錐,它的底面是邊長為2的正方形,其俯視圖如圖所示,側(cè)視圖為直角三角形,則該四棱錐的側(cè)面中直角三角形的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系中,已知點(diǎn)A(0,0),B(4,3),若A,B,C三點(diǎn)按順時(shí)針方向排列構(gòu)成等邊三角形ABC,且直線BC與x軸交于點(diǎn)D.
(1)求cos∠CAD的值;
(2)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx-1
(1)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的取值范圍;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別是a,b,c,若f($\frac{C}{2}$)=2,求∠C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=2x+x+1,g(x)=log2x+x+1,h(x)=log2x-1的零點(diǎn)依次為a,b,c,則( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

同步練習(xí)冊答案