【題目】如圖,在三棱錐S-ABC中,平面SAB⊥平面SBC,ABBC,AS=AB,點EF,G分別在棱SASB,SC上,且平面EFG∥平面ABC,點ESA的中點.求證:

(Ⅰ)AF⊥平面SBC;

(Ⅱ)SABC

【答案】(Ⅰ)見解析(Ⅱ)見解析

【解析】

(Ⅰ)由平面EFG∥平面ABC證得,即可說明點的中點,即可證得AFSB,利用平面SAB⊥平面SBC即可證得AF⊥平面SBC,問題得證。

(Ⅱ)由(Ⅰ)中結(jié)論可證得BCAF,結(jié)合BABC即可證得BC⊥平面SAB,問題得證。

證明:(Ⅰ)平面EFG∥平面ABC,

平面EFG平面=,平面ABC平面=,

,又點的中點

的中點,

AS=AB,

AFSB

∵在三棱錐S-ABC中,平面SAB⊥平面SBC,平面SAB平面SBC=SB,

AF⊥平面SBC

(Ⅱ)∵AF⊥平面SBC,BC平面SBC,

BCAF

BABCBAAF=A,

BC⊥平面SAB,

SA平面SAB,∴SABC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列{an}的公比為q,其前n項之積為Tn,并且滿足條件:a1>1,a2 016a2 017>1, .給出下列結(jié)論:(1)0<q<1;(2)a2 016a2 018-1>0;(3)T2 016是數(shù)列{Tn}中的最大項;(4)使Tn>1成立的最大正整數(shù)n為4 031.其中正確的結(jié)論為(  )

A. (2)(3) B. (1)(3)

C. (1)(4) D. (2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BEAF,BCAD,AFABBC=2,AD=1.

(1)證明:在平面BCE上,一定存在過點C的直線l與直線DF平行;

(2)求二面角FCDA的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】意大利數(shù)學(xué)家列昂納多·斐波那契是第一個研究了印度和阿拉伯?dāng)?shù)學(xué)理論的歐洲人,斐波那契數(shù)列被譽為是最美的數(shù)列,斐波那契數(shù)列滿足:,,.若將數(shù)列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前項所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論正確的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述錯誤的是(

A.已知直線和平面,若點,點,,則

B.若三條直線兩兩相交,則三條直線確定一個平面

C.若直線不平行于平面,且,則內(nèi)的所有直線與都不相交

D.若直線不平行,且,,,則l至少與,中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是圓O的直徑,C是圓O上一點,AC=BC,且PA⊥平面ABC,EAC的中點,FPB的中點,PA=,AB=2.求:

(Ⅰ)異面直線EFBC所成的角;

(Ⅱ)點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在一個實數(shù),使得成立,則稱為函數(shù)的一個不動點,設(shè)函數(shù) 為自然對數(shù)的底數(shù)),定義在上的連續(xù)函數(shù)滿足,且當(dāng)時, .若存在,且為函數(shù)的一個不動點,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求上的最小值;

2)若關(guān)于的不等式只有兩個整數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某市111日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量優(yōu)良空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機選擇111日至1112日中的某一天到達(dá)該市,并停留3天.

(1)求此人到達(dá)當(dāng)日空氣重度污染的概率;

(2)設(shè)X是此人停留期間空氣重度污染的天數(shù),X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案