(本小題滿分12分)
設(shè)橢圓的離心率,右焦點(diǎn)到直線的距離為坐標(biāo)原點(diǎn)。
(I)求橢圓的方程;
(II)過點(diǎn)作兩條互相垂直的射線,與橢圓分別交于兩點(diǎn),證明點(diǎn)到直線的距離為定值,并求弦長(zhǎng)度的最小值.
解:(I)由
由右焦點(diǎn)到直線的距離為
得:      解得
所以橢圓C的方程為         …………4分
(II)設(shè),
直線AB的方程為與橢圓聯(lián)立消去y得



 
整理得   所以O(shè)到直線AB的距離
            …………8分
, 當(dāng)且僅當(dāng)OA=OB時(shí)取“=”號(hào)。


即弦AB的長(zhǎng)度的最小值是         …………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)已知橢圓的右焦點(diǎn)為,為橢圓的上頂點(diǎn),為坐標(biāo)原點(diǎn),且△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線交橢圓于,兩點(diǎn), 且使點(diǎn)為△的垂心(垂心:三角形三邊高線的交點(diǎn))?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是橢圓的兩個(gè)焦點(diǎn),是橢圓上的動(dòng)點(diǎn)(不能重合于長(zhǎng)軸的兩端點(diǎn)),的內(nèi)心,直線軸于點(diǎn),則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的方程為它的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,離心率過橢圓的右焦點(diǎn)F作與坐標(biāo)軸不垂直的直線交橢圓于A、B兩點(diǎn).(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若橢圓的左右焦點(diǎn)分別為,線段被拋物線的焦點(diǎn)內(nèi)分成了的兩段.
(1)求橢圓的離心率;
(2)過點(diǎn)的直線交橢圓于不同兩點(diǎn),且,當(dāng)的面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸端點(diǎn)為A,B,右焦點(diǎn)為F,且.
(I) 求橢圓的標(biāo)準(zhǔn)方程;
(II)過橢圓的右焦點(diǎn)F作直線,直線l1與橢圓分別交于點(diǎn)M,N,直線l2與橢圓分別交于點(diǎn)P,Q,且,求四邊形MPNQ的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知地球運(yùn)行的軌道是橢圓,太陽在這個(gè)橢圓的一個(gè)焦點(diǎn)上,這個(gè)橢圓的長(zhǎng)半軸長(zhǎng)約為km,半焦距約為km,則地球到太陽的最大距離是  km。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),P為橢圓C上任一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點(diǎn)A,B且線段AB的垂直平分線過定點(diǎn)C(,0)求實(shí)數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)F1,F(xiàn)2為橢圓的焦點(diǎn),P為橢圓上的點(diǎn),當(dāng)的面積為1時(shí),的值是(   )
A.0B.1C.3D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案