【題目】社區(qū)服務(wù)是高中學(xué)生社會實踐活動的一個重要內(nèi)容,漢中某中學(xué)隨機(jī)抽取了100名男生、100名女生,了解他們一年參加社區(qū)服務(wù)的時間,按,,,,(單位:小時)進(jìn)行統(tǒng)計,得出男生參加社區(qū)服務(wù)時間的頻率分布表和女生參加社區(qū)服務(wù)時間的頻率分布直方圖.
(1)完善男生參加社區(qū)服務(wù)時間的頻率分布表和女生參加社區(qū)服務(wù)時間的頻率分布直方圖.
抽取的100名男生參加社區(qū)服務(wù)時間的頻率分布表
社區(qū)服務(wù)時間 | 人數(shù) | 頻率 |
0.05 | ||
20 | ||
0.35 | ||
30 | ||
合計 | 100 | 1 |
學(xué)生社區(qū)服務(wù)時間合格與性別的列聯(lián)表
不合格的人數(shù) | 合格的人數(shù) | |
男 | ||
女 |
(2)按高中綜合素質(zhì)評價的要求,高中學(xué)生每年參加社區(qū)服務(wù)的時間不少于20個小時才為合格,根據(jù)上面的統(tǒng)計圖表,完成抽取的這200名學(xué)生參加社區(qū)服務(wù)時間合格與性別的列聯(lián)表,并判斷是否有以上的把握認(rèn)為參加社區(qū)服務(wù)時間達(dá)到合格程度與性別有關(guān),并說明理由.
(3)用以上這200名學(xué)生參加社區(qū)服務(wù)的時間估計全市9萬名高中學(xué)生參加社區(qū)服務(wù)時間的情況,并以頻率作為概率.
(i)求全市高中學(xué)生參加社區(qū)服務(wù)時間不少于30個小時的人數(shù).
(ⅱ)對我市高中生參加社區(qū)服務(wù)的情況進(jìn)行評價.
參考公式
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.002 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其)
【答案】(1)見解析(2)見解析(3)見解析
【解析】
(1)根據(jù)公式:每小組的頻率等于每小組的頻數(shù)除以樣本容量,進(jìn)行求解。
根據(jù)在頻率分布直方圖中,各小長方形的面積的總和等于1,計算出女生在段小長方形的面積,最后補(bǔ)完整頻率分布直方圖。
(2)按照每年參加社區(qū)服務(wù)的時間不少于20個小時才為合格這一要求,在100名男生參加社區(qū)服務(wù)時間頻率分布表中求出男生合格人數(shù)、不合格人數(shù);在100名女生參加社區(qū)服務(wù)時間頻率直方圖中,求出女生合格人數(shù),不合格人數(shù),填寫列聯(lián)表。求出,得出結(jié)論。
(3)(i)根據(jù)100名男生參加社區(qū)服務(wù)時間頻率分布表和100名女生參加社區(qū)服務(wù)時間頻率直方圖,可以求出這200名學(xué)生參加社區(qū)服務(wù)時間不少于30個小時的人數(shù),然后求出全市高中生社區(qū)服務(wù)時間不少于30個小時的概率,最后求出求全市高中學(xué)生參加社區(qū)服務(wù)時間不少于30個小時的人數(shù).
(ⅱ)可以從以下這四個方面做出
A全市高中生是不是都達(dá)到高中素質(zhì)評價的要求方面;
B全市所有學(xué)生參與社區(qū)服務(wù)的時間多少方面;
C全市高中學(xué)生中,女生參與社區(qū)服務(wù)的時間比男生長短方面;
D全市高中學(xué)生,參與社區(qū)服務(wù)時間的長短集中哪個時間段方面。
(1)由每小組的頻率等于每小組的頻數(shù)除以樣本容量,這個公式可以計算出每一時間段所需填寫的內(nèi)容。
段:人數(shù)=0.05100=5;段:頻率=20100=0.2;
段:人數(shù)=0.35100=35; 段:頻率=30100=0.3;
段:人數(shù)=1005203530=10,頻率=10.050.20.350.3=0.1。
補(bǔ)全抽取的100名男生參加社區(qū)服務(wù)時間的頻率分布表,如下表:
社區(qū)服務(wù)時間 | 人數(shù) | 頻率 |
5 | 0.05 | |
20 | 0.2 | |
35 | 0.35 | |
30 | 0.3 | |
10 | 0.1 | |
合計 | 100 | 1 |
根據(jù)在頻率分布直方圖中,各小長方形的面積的總和等于1,所以有
,補(bǔ)完頻率分布直方圖如下圖:
(2)通過抽取的100名男生參加社區(qū)服務(wù)時間的頻率分布表可知男生合格人數(shù)為75人,不合格人數(shù)為25人;通過抽取的100名女生參加社區(qū)服務(wù)時間頻率直方圖中可知合格人數(shù)為65人,不合格人數(shù)為35人, 列聯(lián)表如下表。
學(xué)生社區(qū)服務(wù)時間合格人數(shù)與性別的列聯(lián)表
不合格的人數(shù) | 合格的人數(shù) | |
男 | 25 | 75 |
女 | 35 | 65 |
,
∴沒有以上把握認(rèn)為社區(qū)服務(wù)時間達(dá)到合格與性格有關(guān).
(3)(i)抽取的樣本中社區(qū)服務(wù)時間不少于30個小時的人數(shù)為70人,頻率為,所以全市高中生社區(qū)服務(wù)時間不少于30個小時的概率為,所以全市高中生社區(qū)服務(wù)時間不少于30個小時的人數(shù)為萬人.
(ii)可從以下四個角度分析,也可以從其它角度分析,角度正確,分析合理即可。
A從抽樣數(shù)據(jù)可以得到全市高中生還有一部分學(xué)生參與社區(qū)服務(wù)的時間太少,不能達(dá)到高中素質(zhì)評價的要求。
B全市所有學(xué)生參與社區(qū)服務(wù)的時間都偏少。
C全市高中學(xué)生中,女生參與社區(qū)服務(wù)的時間比男生短。
D全市高中學(xué)生,參與社區(qū)服務(wù)時間的長短集中在之間.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一塊直角三角形木板置于平面直角坐標(biāo)系中,已知,點(diǎn)是三角形木板內(nèi)一點(diǎn),現(xiàn)因三角形木板中陰影部分受到損壞,要把損壞部分鋸掉,可用經(jīng)過點(diǎn)的任一直線將三角形木板鋸成.設(shè)直線的斜率為.
(Ⅰ)求點(diǎn)的坐標(biāo)及直線的斜率的范圍;
(Ⅱ)令的面積為,試求出的取值范圍;
(Ⅲ)令(Ⅱ)中的取值范圍為集合,若對恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸端點(diǎn)為,,點(diǎn)是橢圓上的動點(diǎn),且不與,重合,點(diǎn)滿足,.
(Ⅰ)求動點(diǎn)的軌跡方程;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的頂點(diǎn),邊上的中線所在的直線方程是,AC邊上的高所在的直線方程是.
求:(1)AC邊所在的直線方程;
(2)AB邊所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)試判斷函數(shù)在上的單調(diào)性,并說明理由;
(2)若是在區(qū)間上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過M(,1),N(,1)兩點(diǎn),且圓心C在直線x+y﹣3=0上,過點(diǎn)A(﹣1,0)的動直線l與圓C相交于P、Q兩點(diǎn).
(Ⅰ)求圓C的方程;
(Ⅱ)當(dāng)|PQ|=4時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)到直線的距離為,為等腰直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線與橢圓交于,兩點(diǎn),若直線與直線的斜率之和為,證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)和橢圓. 直線與橢圓交于不同的兩點(diǎn).
(Ⅰ) 求橢圓的離心率;
(Ⅱ) 當(dāng)時,求的面積;
(Ⅲ)設(shè)直線與橢圓的另一個交點(diǎn)為,當(dāng)為中點(diǎn)時,求的值 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com