4.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn且滿足a1013=S2013=2013則$\frac{S_1}{a_1}$,$\frac{S_2}{a_2}$,$\frac{S_3}{a_3}$,…,$\frac{{{S_{15}}}}{{{a_{15}}}}$中最大的項(xiàng)為(  )
A.$\frac{S_6}{a_6}$B.$\frac{S_7}{a_7}$C.$\frac{S_8}{a_8}$D.$\frac{S_9}{a_9}$

分析 由等差數(shù)列的前n項(xiàng)和性質(zhì)求出a8>0,a9<0,由此能求出$\frac{S_1}{a_1},\frac{S_2}{a_2},\frac{S_3}{a_3},…,\frac{{{S_{15}}}}{{{a_{15}}}}$中最大的項(xiàng).

解答 解:∵數(shù)列{an}為等差數(shù)列,且S15>0,S16<0,
∴a8>0,a8+a9<0,即a9<0,
則$\frac{S_1}{a_1},\frac{S_2}{a_2},\frac{S_3}{a_3},…,\frac{{{S_{15}}}}{{{a_{15}}}}$的前8項(xiàng)為正,第9到15項(xiàng)為負(fù),
且前8項(xiàng)中,分子不斷變大,分母不斷減小,
$\frac{S_1}{a_1},\frac{S_2}{a_2},\frac{S_3}{a_3},…,\frac{{{S_{15}}}}{{{a_{15}}}}$中最大的項(xiàng)為$\frac{S_8}{a_8}$.
故選:C.

點(diǎn)評 本題考查等差數(shù)列的前n和與第n項(xiàng)的比值的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知a,b是實(shí)數(shù),函數(shù)f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的導(dǎo)函數(shù),若f′(x)g′(x)≥0在區(qū)間I上恒成立,則稱f(x)和g(x)在區(qū)間I上單調(diào)性一致.
(Ⅰ)討論f(x)的極值;
(Ⅱ)設(shè)a>0,若函數(shù)f(x)和g(x)在區(qū)間[-2,+∞)上單調(diào)性一致,求實(shí)數(shù)b的取值范圍;
(Ⅲ)設(shè)a<0,且a≠b,若函數(shù)f(x)和g(x)在以a,b為端點(diǎn)的開區(qū)間上單調(diào)性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)A={x|x2-8x+15=0},B={x|ax-1=0},若A∩B=B,則實(shí)數(shù)a組成的集合是$\{0,\frac{1}{3},\frac{1}{5}\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若圓C:x2+y2-$2\sqrt{2}$x-$2\sqrt{2}$y-12=0上有四個(gè)不同的點(diǎn)到直線l:x-y+c=0的距離為2,則c的取值范圍是( 。
A.[-2,2]B.[-2$\sqrt{2}$,2$\sqrt{2}$]C.(-2,2)D.(-2$\sqrt{2}$,2$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(I)寫出直線l的普通方程和曲線C2的直角坐標(biāo)方程;
(II)直線l與曲線C2交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.i是虛數(shù)單位,則$\frac{1}{1+i}$=( 。
A.$\frac{1-i}{2}$B.-$\frac{1+i}{2}$C.$\frac{1+i}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+ax.
(Ⅰ)當(dāng)x=1時(shí),f(x)=x3+ax有極小值,求a的值;
(Ⅱ)若過點(diǎn)P(1,1)只有一條直線與曲線y=f(x)相切,求a的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,判斷過點(diǎn)A(0,3),B(2,0),C(-2,-2)分別存在幾條直線與曲線y=f(x)相切.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3+2bx2+cx-2的圖象在與x軸交點(diǎn)處切線方程是y=5x-10
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)+$\frac{1}{3}$mx,若函數(shù)g(x)存在極值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若f(x)=1-2x,g[f(x)]=2x+x,則g(-1)的值為(  )
A.1B.3C.-$\frac{1}{2}$D.6

查看答案和解析>>

同步練習(xí)冊答案