14.下列說法正確的是( 。
A.集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分不必要條件
B.“|a|>|b|”是“a2>b2”的必要不充分條件
C.命題“若a∈M,則b∉M”的否命題是“若a∉M,則b∈M”
D.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b都不是奇數(shù)”

分析 A.根據(jù)集合關(guān)系以及充分條件和必要條件的定義進(jìn)行判斷即可,
B.根據(jù)不等式的關(guān)系,結(jié)合充分條件和必要條件的定義進(jìn)行判斷,
C.根據(jù)否命題的定義進(jìn)行判斷,
D.根據(jù)逆否命題的定義進(jìn)行判斷即可.

解答 解:A.∵M(jìn)={x|0<x≤3},N={x|0<x≤2},∴N?M,即“a∈M”是“a∈N”的必要不充分條件,故A錯誤,
B.“|a|>|b|”?“a2>b2”,即“|a|>|b|”是“a2>b2”的充要條件,故B錯誤,
C.根據(jù)否命題的定義得命題“若a∈M,則b∉M”的否命題是“若a∉M,則b∈M”,故C正確,
D.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”,故D錯誤,
故選:C.

點評 本題主要考查命題的真假判斷,涉及充分條件和必要條件的定義,四種命題之間的關(guān)系,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為研究懸掛重量x(單位:克)與某物體長度y(單位:厘米)的關(guān)系,進(jìn)行了6次實驗,數(shù)據(jù)如表所示,求得線性回歸方程為:$\widehat{y}$=0.183x+6.285.
x51015202530
y7.258.128.959.9010.911.8
由以上數(shù)據(jù)計算此回歸方程的相關(guān)指數(shù):R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{\;}^{\;}({y}_{i}-\overline{y})^{2}}$≈0.999,根據(jù)以上計算結(jié)果,以下說法正確的是( 。
(1)所選回歸直線模型合適;
(2)所選回歸直線模型擬合精度不高;
(3)懸掛重量影響該物體長度的99.9%;
(4)懸掛重量影響該物體長度差異的99.9%
A.(1)(3)B.(2)(4)C.(1)(4)D.(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=|ax-2|+|ax-a|
(1)當(dāng)a=1時,求不等式f(x)≥2的解集;
(2)若存在x∈R,使f(x)<2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知θ∈(0,$\frac{π}{2}$),且sinθ=$\frac{3}{5}$,則tanθ=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將1,2,3,4,5,6這六個數(shù)字組成一個沒有重復(fù)數(shù)字的六位數(shù),若1和2相鄰,且3和4不相鄰,則這樣六位數(shù)的個數(shù)為(  )
A.288B.144C.72D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若sinα,sin2α,sin4α成等比數(shù)列,則cosα的值為(  )
A.1B.0C.-$\frac{1}{2}$D.-$\frac{1}{2}$或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知復(fù)數(shù)z1=$\frac{2}{1-a}$+(2a-5)i,z2=$\frac{3}{a+5}$+(10-a2)i,其中a為實數(shù),i為虛數(shù)單位.
(1)若復(fù)數(shù)z1在復(fù)平面內(nèi)對應(yīng)的點在第三象限,求a的取值范圍;
(2)若z1+$\overline{{z}_{2}}$是實數(shù)($\overline{{z}_{2}}$表示z2的共軛復(fù)數(shù)),求|z1|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的左、右焦點分別為F1、F2,橢圓上的點P滿足|PF1|-|PF2|=2,則△PF1F2的面積為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知三棱錐S-ABC的所有頂點都在球O的球面上,其中AB⊥AC,SA⊥AC,SA=2,AB=AC=$\sqrt{2}$,若頂點S到BC邊中點的距離為$\sqrt{5}$,則球O的體積為$\frac{8\sqrt{2}}{3}π$.

查看答案和解析>>

同步練習(xí)冊答案