【題目】已知圓過(guò)點(diǎn),且圓心在直線上,過(guò)點(diǎn)的直線交圓于兩點(diǎn),過(guò)點(diǎn)分別做圓的切線,記為.
(Ⅰ)求圓的方程;
(Ⅱ)求證:直線的交點(diǎn)都在同一條直線上,并求出這條直線的方程.
【答案】(Ⅰ);(Ⅱ)直線的交點(diǎn)都在直線同一條直線上,且直線方程為.
【解析】
(Ⅰ)設(shè)圓的方程為
弦的中點(diǎn),又 ,故的垂直平分線的方程
因?yàn)閳A心是的垂直平分線與直線的交點(diǎn),由,得,即圓心
又半徑,即可得到圓的方程;
(Ⅱ)設(shè),直線的交點(diǎn)
若為直線上任意一點(diǎn),則,得
∴,即處的圓的切線方程
同理可得,在點(diǎn)處的圓的切線方程為
由直線過(guò)點(diǎn)可推出點(diǎn)滿(mǎn)足方程
即直線的方程為 ,
又直線過(guò)點(diǎn)即
由此可得到直線的交點(diǎn)都在直線同一條直線上,且直線方程為.
(Ⅰ)設(shè)圓的方程為
弦的中點(diǎn)
又
∴的垂直平分線的方程:
即
圓心是的垂直平分線與直線的交點(diǎn)
∴由,得,即圓心
又半徑
∴圓的方程為
(Ⅱ)設(shè),直線的交點(diǎn)
若為直線上任意一點(diǎn),則
,得,
∵
∴,即處的圓的切線方程
同理可得,在點(diǎn)處的圓的切線方程為
由直線過(guò)點(diǎn)
∴,,
∴點(diǎn)滿(mǎn)足方程
即直線的方程為 ,
又直線過(guò)點(diǎn)
∴,即
∴直線的交點(diǎn)都在直線同一條直線上,且直線方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos ,g(x)=exf(x),其中e為自然對(duì)數(shù)的底數(shù).
(1)求曲線y=g(x)在點(diǎn)(0,g(0))處的切線方程;
(2)若對(duì)任意 時(shí),方程g(x)=xf(x)的解的個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在區(qū)間上的最大值;
(2)若過(guò)點(diǎn)存在3條直線與曲線相切,求t的取值范圍;
(3)問(wèn)過(guò)點(diǎn)分別存在幾條直線與曲線相切?(只需寫(xiě)出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x+b)(其中a,b為常數(shù),且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(﹣2,0),B(1,2).
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=( )2x﹣( )x﹣1,x∈[0,+∞),求g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圓,求實(shí)數(shù)m的范圍;
(2)在方程表示圓時(shí),該圓與直線l:x+2y﹣4=0相交于M、N兩點(diǎn),且|MN|=,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ln(x+m)
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=(x2﹣2x﹣3)的單調(diào)減區(qū)間是( )
A.(3,+∞)
B.(1,+∞)
C.(﹣∞,1)
D.(﹣∞,﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面幾何中,與三角形的三條邊所在直線的距離相等的點(diǎn)有且只有四個(gè).類(lèi)似的:在立體幾何中,與正四面體的六條棱所在直線的距離相等的點(diǎn) ( )
A. 有且只有一個(gè) B. 有且只有三個(gè) C. 有且只有四個(gè) D. 有且只有五個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在x=-1與x=2處都取得極值.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若對(duì),不等式恒成立,求c的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com