如果二次函數(shù)y=3x2+2(a-1)x+b在區(qū)間(-∞,1)上是減函數(shù),在區(qū)間[1,+∞)上是增函數(shù),那么a的取值集合是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的性質(zhì),得到函數(shù)的對(duì)稱軸是x=-
a-1
3
=1,解出即可.
解答: 解:由題意得:
對(duì)稱軸x=-
a-1
3
=1,
解得:a=-2
故答案為:{-2}.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),考查了函數(shù)的單調(diào)性,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù):(1)y=x+
1
x
;(2)y=x2+
1
x2
;(3)y=
x2+3
+
1
x2+3
;(4)y=tanθ+
1
tanθ
,其中,最小值是2的為
 
.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
18+3x-x2
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|y=
1
1-x
},則∁UA=( 。
A、[1,+∞)
B、(-∞,1)
C、(1,+∞)
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若U=R,A={x|x-1<0},B={x|x+3>0},則A∩B=
 
,A∪B=
 
,∁UA=
 
,∁UB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線C:
x2
a2
-
y2
b2
=1(a>b>0)上的點(diǎn)P(
3a
2
,y)到C的右焦點(diǎn)F2的距離小于它到C的左準(zhǔn)線l的距離,則C的離心率e的取值范圍是( 。
A、(
2
,+∞
B、(1,
2
C、(2,+∞)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知R是實(shí)數(shù)集,集合P={x|x2+2012x-2013>0},Q={y|y=
-x2+2x+3
},則(∁RP)∩Q=( 。
A、(0,1]
B、[0,1]
C、(-1,1]
D、[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四棱柱ABCD-A1B1C1D1中,點(diǎn)O是正方形ABCD對(duì)角線的交點(diǎn),AA1=4,AB=2,點(diǎn)E,F(xiàn)分別在CC1和A1A上,且A1F=CE
(Ⅰ)求證:B1F∥平面BDE
(Ⅱ)若A1O⊥BE,求CE的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角A1-BE-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2x2+a
3-x
,x∈[0,
5
2
]的圖象為曲線C.且曲線C在點(diǎn)(2,f(2))處的切線平行于直線y=6x
(Ⅰ)求函數(shù)f(x)解析式
(Ⅱ)求f(x)單調(diào)區(qū)間和值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案