10.設(shè)集合A={1,2},B=(a+1,2),若A∪B={1,2,3},則實數(shù)a的值為2.

分析 由并集定義得a+1=3,由此能求出實數(shù)a的值.

解答 解:∵集合A={1,2},B=(a+1,2),A∪B={1,2,3},
∴a+1=3,解得實數(shù)a的值2.
故答案為:2.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意并集的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}的各項均為正數(shù),Sn表示數(shù)列{an}的前n項的和,且$2{S_n}=a_n^2+{a_n}$
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知a,t為正實數(shù),函數(shù)f(x)=x2-2x+a,且對任意的x∈[0,t]都有f(x)∈[-a,a].若對每一個正實數(shù)a,記t的最大值為g(a),則$g(1)+g(\frac{3}{8})$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.解下列關(guān)于x的不等式
(1)$\frac{{{x^2}+1}}{x-1}≥x+\frac{5}{x-1}+3$ 
(2)ax2-(a+2)x+2≤0(其中a>0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.關(guān)于函數(shù)f(x)=$\frac{2}{x}$+lnx,下列說法錯誤的是(  )
A.x=2是f(x)的極小值點
B.函數(shù)y=f(x)-x有且只有1個零點
C.存在正實數(shù)k,使得f(x)>kx恒成立
D.對任意兩個不相等的正實數(shù)x1,x2,若f(x1)=f(x2),則x1+x2>4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在平面直角坐標系xOy中,邊長為1的正△OAB的頂點A,B均在第一象限,設(shè)點A在x軸的射影為C,∠AOC=α.
(1)試將$\overrightarrow{OA}$•$\overrightarrow{CB}$表示α的函數(shù)f(α),并寫出其定義域;
(2)求函數(shù)f(α)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知圓(x+1)2+(y-2)2=1上一點P到直線4x-3y-5=0的距離為d,則d的最小值為( 。
A.1B.2C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.一個袋中裝有黑球,白球和紅球共n(n∈N*)個,這些球除顏色外完全相同.已知從袋中任意摸出1個球,得到黑球的概率是$\frac{2}{5}$.現(xiàn)從袋中任意摸出2個球.
(Ⅰ) 用含n的代數(shù)式表示摸出的2球都是黑球的概率,并寫出概率最小時n的值.(直接寫出n的值)
(Ⅱ) 若n=15,且摸出的2個球中至少有1個白球的概率是$\frac{4}{7}$,設(shè)X表示摸出的2個球中紅球的個數(shù),求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若不等式kx2+kx-1≤0(k為實數(shù))的解集為R,則直線kx+y-2=0的斜率的最大值等于(  )
A.2B.4C.5D.8

查看答案和解析>>

同步練習冊答案