分析 (1)根據題意,用α表示出$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$,求出$\overrightarrow{CB}$,
利用數量積個數計算f(α)并化簡,寫出α的取值范圍;
(2)根據α的取值范圍即可求出函數f(α)的值域.
解答 解:(1)根據題意,|$\overrightarrow{OA}$|=1,∠AOC=α,
∴$\overrightarrow{OA}$=(cosα,sinα),
$\overrightarrow{OB}$=(cos(α+$\frac{π}{3}$),sin(α+$\frac{π}{3}$)),
$\overrightarrow{OC}$=(cosα,0);
∴$\overrightarrow{CB}$=$\overrightarrow{OB}$-$\overrightarrow{OC}$=(cos(α+$\frac{π}{3}$)-cosα,sin(α+$\frac{π}{3}$)),
∴f(α)=$\overrightarrow{OA}$•$\overrightarrow{CB}$=cosα[cos(α+$\frac{π}{3}$)-cosα]+sinαsin(α+$\frac{π}{3}$)
=cos[(α+$\frac{π}{3}$)-α]-cos2α
=$\frac{1}{2}$-$\frac{1+cos2α}{2}$
=-$\frac{1}{2}$cos2α,其中α∈(0,$\frac{π}{6}$);
(2)由(1)知,f(α)=-$\frac{1}{2}$cos2α,
α∈(0,$\frac{π}{6}$)時,2α∈(0,$\frac{π}{3}$),
cos2α∈($\frac{1}{2}$,1),
∴-$\frac{1}{2}$cos2α∈(-$\frac{1}{2}$,-$\frac{1}{4}$),
∴函數f(α)的值域為(-$\frac{1}{2}$,-$\frac{1}{4}$).
點評 本題考查了三角函數的恒等變換與數量積的計算問題,是中檔題.
科目:高中數學 來源: 題型:選擇題
使用智能手機 | 不使用智能手機 | 總計 | |
學習成績優(yōu)秀 | 4 | 8 | 12 |
學習成績不優(yōu)秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. | 有99.5%的把握認為使用智能手機對學習有影響 | |
B. | 有99.5%的把握認為使用智能手機對學習無影響 | |
C. | 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習有影響 | |
D. | 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習無影響 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $({3-\frac{3}{2}ln2,+∞})$ | B. | $[{3-\frac{3}{2}ln2,+∞})$ | C. | [3-3ln2,+∞) | D. | (3-3ln2,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com