【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏,將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了100名選手進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.
(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?
(2)若參賽選手共6萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù);
(3)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6,在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實數(shù)解的概率.
【答案】(1)見解析;(2);(3).
【解析】試題分析:(1)根據(jù)條形圖數(shù)據(jù)填表,根據(jù)卡方公式計算值,最后與參考數(shù)據(jù)比較得結(jié)論,(2)根據(jù)頻率等于頻數(shù)與總數(shù)的比值求頻率,再根據(jù)頻數(shù)等于頻率與總數(shù)的乘積得頻數(shù).(3)先根據(jù)枚舉法得到基本事件的總數(shù),再根據(jù)方程組有唯一解得到,即去掉不滿足條件的3種事件,最后根據(jù)古典概型概率公式求概率.
試題解析:(1)由條形圖可知列聯(lián)表如下:
所以沒有95%的把握認(rèn)為優(yōu)秀與文化程度有關(guān).
(2)由條形圖知,所抽取的100人中,優(yōu)秀等級有75人,故優(yōu)秀率為
所以所有參賽選手中優(yōu)秀等級人數(shù)約為萬人.
(3)從1,2,3,4,5,6中取, 從1,2,3,4,5,6中取,故共有36種,要使方程組有唯一一組實數(shù)解,則,共33種情形.
故概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,其中, .
(1)求, , ,并猜想的表達式(不必寫出證明過程);
(2)設(shè),數(shù)列的前項和為,求證: .
(B)已知數(shù)列的前項和為,且滿足, .
(1)求, , , ,并猜想的表達式(不必寫出證明過程);
(2)設(shè), ,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形中,,為的中點,且△是等邊三角形,沿把△折起至的位置,使得.
(1)是線段的中點,求證:平面;
(2)求證:;
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(A)已知數(shù)列滿足,其中, .
(1)求, , ,并猜想的表達式(不必寫出證明過程);
(2)由(1)寫出數(shù)列的前項和,并用數(shù)學(xué)歸納法證明.
(B)已知數(shù)列的前項和為,且滿足, .
(1)猜想的表達式,并用數(shù)學(xué)歸納法證明;
(2)設(shè), ,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點,和平面內(nèi)一點(),過點任作直線與橢圓相交于,兩點,設(shè)直線,,的斜率分別為,,,,試求,滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(4,-3),B(2,-1)和直線l:4x+3y-2=0.
(1)求在直角坐標(biāo)平面內(nèi)滿足|PA|=|PB|的點P的方程;
(2)求在直角坐標(biāo)平面內(nèi)一點P滿足|PA|=|PB|且點P到直線l的距離為2的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯誤的是 ( )
A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面
B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)若曲線在處的切線方程為.求實數(shù)的值;
(2)①若時,函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍;
②若,若對一切正實數(shù)恒成立,求實數(shù)的取值范圍(用表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com