已知函數(shù)f(x)的圖象是連續(xù)不斷的一條曲線,且滿足 f(1)>0,f(5)<0,若 f(3)>0.則f(x)在下列區(qū)間內(nèi)必有零點(diǎn)的是( 。
A、(1,3)
B、(3,5)
C、(2,4)
D、(3,4)
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:緊扣函數(shù)零點(diǎn)的判斷定理判斷.
解答: 解:∵函數(shù)f(x)的圖象是連續(xù)不斷的一條曲線,
又∵f(1)>0,f(5)<0,f(3)>0;
∴f(1)f(3)>0,f(1)f(5)<0,f(3)f(5)<0,
∴f(x)在區(qū)間(3,5)上必有零點(diǎn),
故選B.
點(diǎn)評(píng):本題考查了函數(shù)零點(diǎn)的判斷定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若A=45°,三邊a、b、c成等比數(shù)列,求
bsinB
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式log4(8x-2x)≤x的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+bx+b-1(b∈R).
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若對(duì)任意x1,x2∈[-1,1],有f(x1)-f(x2)≤4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿足條件
2x+y-1≥0
x-y≤0
y≤k
且z=x+y的最大值是10,則k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)滿足,f(-x)=f(
1
x
),則稱f(x)為“負(fù)倒”變換函數(shù),給出下列函數(shù):
①f(x)=x-
1
x
;②f(x)=x+
1
x
:③f(x)=x2-
1
x2
;④f(x)=
x,x>0
-
1
x
,x<0

其中所有屬于“負(fù)倒”變換函數(shù)的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的空間直角坐標(biāo)系中,正方體ABCD-A1B1C1D1棱長(zhǎng)為2,E為正方體的棱AA1的中點(diǎn),F(xiàn)為棱AB上的一點(diǎn),且∠C1EF=90°,則點(diǎn)F的坐標(biāo)為( 。
A、(2,
1
2
,0)
B、(2,
1
3
,0)
C、(2,
1
4
,0)
D、(2,
2
3
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,點(diǎn)P是函數(shù)y=2sin(ωx+φ)(x∈R,ω>0)的圖象的最高點(diǎn),M,N是該圖象與x軸的交點(diǎn),若
PM
PN
=0,則ω的值為(  )
A、
π
8
B、
π
4
C、4
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是公差不為零的等差數(shù)列,a2=2,且a1,a3,a9成等比數(shù)列,則數(shù)列{an}的前n項(xiàng)和Sn=( 。
A、
n2
4
+
7n
4
B、
n2
2
+
3n
2
C、
n2
4
+
3n
4
D、
n2
2
+
n
2

查看答案和解析>>

同步練習(xí)冊(cè)答案