2.復(fù)數(shù)z=$\frac{1}{{i}^{3}}$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為( 。
A.(0,1)B.(0,-1)C.(-1,0)D.(1,0)

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡z,求得z的坐標(biāo)得答案.

解答 解:∵z=$\frac{1}{{i}^{3}}$=$\frac{1}{-i}=\frac{i}{-{i}^{2}}=i$,
∴復(fù)數(shù)z=$\frac{1}{{i}^{3}}$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為(0,1).
故選:A.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{x}{a}$-lnx(a≠0,a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在兩個不相等的正數(shù)x1,x2,滿足f(x1)=f(x2),求證:x1+x2>2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知an=$\frac{{n-\sqrt{96}}}{{n-\sqrt{97}}}$(n∈N*),則在數(shù)列{an}的前30項中最大項和最小項分別是(  )
A.a1,a30B.a1,a9C.a10,a9D.a10,a30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知復(fù)數(shù)z=a2-1-(a2-3a+2)i,a∈R.
(1)若z是純虛數(shù)時,求a的值;
(2)若z是虛數(shù),且z的實部比虛部大時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若c=2,∠C=$\frac{π}{3}$,且sinC+sin(B-A)-2sin2A=0,下列命題正確的是②③④(寫出所有正確命題的編號).
①b=2a;
②△ABC的周長為2+2$\sqrt{3}$;
③△ABC的面積為$\frac{{2\sqrt{3}}}{3}$;
④△ABC的外接圓半徑為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.sin75°的值等于( 。
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=x3-$\frac{1}{2}$x2-2x+5.
(1)求f(x)的單調(diào)區(qū)間;
(2)過(0,a)可作y=f(x)的三條切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)$\overrightarrow{e_1}$,$\overrightarrow{e_2}$為單位向量,且$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夾角為60°,若$\overrightarrow a$=$\overrightarrow{e_1}$+3$\overrightarrow{e_2}$,$\overrightarrow b$=2$\overrightarrow{e_1}$,則|$\overrightarrow a$+$\overrightarrow b$|等于3$\sqrt{3}$,向量$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若x=2+$\sqrt{3}$,y=2-$\sqrt{3}$,求x2y+xy2的值.

查看答案和解析>>

同步練習(xí)冊答案