2.垂直于直線3x-4y-7=0,且與兩坐標(biāo)圍成的三角形的面積為6的直線在x軸上的截距是3或-3.

分析 根據(jù)垂直關(guān)系求出直線的斜率,得到它在坐標(biāo)軸上的截距,根據(jù)與兩坐標(biāo)軸圍成的三角形面積求出截距,即得直線方程,即可求出對應(yīng)的截距.

解答 解:∵直線l的方程為3x-4y-7=0,
∴設(shè)所求直線l′的方程為y=-$\frac{4}{3}$x+b,
則直線l′在x軸上的截距為$\frac{3}{4}$b,在y軸上的截距為b,
∵與l垂直且與兩坐標(biāo)軸圍成的三角形的面積為6,
∴S=$\frac{1}{2}$|b|•$\frac{3}{4}$|b|=6,
解得b=±4,
∴所求的直線方程為y=-$\frac{4}{3}$x+4或y=-$\frac{4}{3}$x-4,
則該直線在x軸上的截距為$\frac{3}{4}$b=±3.
故答案為:3或-3.

點評 本題考查了直線方程的求法與應(yīng)用問題,解題時要注意直線性質(zhì)的合理運用,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知c>0且c≠1,設(shè)命題p:“函數(shù)y=(2c-1)•cx在R上為減函數(shù)”,命題q:“不等式x+(x-2c)2≤1的解集為∅”,若“p∧q”為真命題,求實數(shù)c的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.奇函數(shù)y=f(x)在[1,2]上是增函數(shù)且有最大值5,則y=f(x)在[-2,1]上是( 。
A.增函數(shù)且有最小值-5B.增函數(shù)且有最大值-5
C.減函數(shù)且有最小值-5D.減函數(shù)且有最大值-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列各函數(shù)的導(dǎo)數(shù).
(1)y=(3x2-4x)(2x+1);
(2)y=x2sinx;
(3)y=$\frac{lnx}{{x}^{2}+1}$;
(4)y=($\sqrt{x}$+1)($\frac{1}{\sqrt{x}}$-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=$\frac{x+a}{2{x}^{2}-1}$,x∈(-∞,b)∪(b+2,+∞)是奇函數(shù),則a+b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在數(shù)列{an}中,a1=2,2an+1=2an+1,則a101的值為( 。
A.49B.50C.51D.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}中,a1=1,(n2+2n)an-n2an-1=0(n∈N*,n≥2),則an=$\frac{6}{(n+1)(n+2)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知cosα=0.68,求sinα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.(1-x+x210的展開式中x3的系數(shù)為( 。
A.-30B.30C.-210D.210

查看答案和解析>>

同步練習(xí)冊答案