15.如圖所示,某人撥通了電話,準(zhǔn)備手機(jī)充值須如下操作(  )
A.1511B.1515C.1521D.1523

分析 根據(jù)已知的流程圖,我們可以分析出準(zhǔn)備手機(jī)充值須進(jìn)行的操作,按先后順序排列按鍵,可得答案.

解答 解:準(zhǔn)備手機(jī)充值須如下操作:
①注冊(cè)客戶服務(wù)1
②代繳費(fèi)用5
③手機(jī)充值繳費(fèi)2
④手機(jī)充值費(fèi)1
即1-5-2-1
故選C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是流程圖,其中讀圖分析出流程圖每種操作的具體步驟是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知底面為正方形的四棱錐P-ABCD,如圖(1)所示,PC⊥面ABCD,其中圖(2)為該四棱錐的正(主)視圖和側(cè)(左)視圖,它們是腰長(zhǎng)為4cm的全等的等腰直角三角形.
(1)根據(jù)圖(2)所給的正視圖、側(cè)視圖,畫(huà)出相應(yīng)的俯視圖,并求出該俯視圖的面積;
(2)求四棱錐P-ABCD的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,已知正方體ABCD-A'B'C'D'的外接球的體積為$\frac{{\sqrt{3}}}{2}π$,將正方體割去部分后,剩余幾何體的三視圖如圖所示,則剩余幾何體的表面積為(  )
A.$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$B.$3+\sqrt{3}$或$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$C.$2+\sqrt{3}$D.$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$或$2+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知空間三點(diǎn)A(-1,2,1),B(1,2,1),C(-1,6,4)
(1)求以向量$\overrightarrow{AB},\overrightarrow{AC}$為一組鄰邊的平行四邊形的面積S;
(2)若向量$\overrightarrow{a}$分別與向量$\overrightarrow{AB}$,$\overrightarrow{AC}$垂直,且|$\overrightarrow{a}$|=10,求向量$\overrightarrow{a}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,已知正方體ABC-A1B1C1D1中,AB=a,P為線段BC1上一點(diǎn),Q為平面ABCD內(nèi)一點(diǎn),則D1P+PQ的最小值為(1+$\frac{\sqrt{2}}{2}$)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知曲線f(x)=ax-1+1(a>1)恒過(guò)定點(diǎn)A,點(diǎn)A恰在雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線上,則雙曲線C的離心率為( 。
A.$\sqrt{5}$B.5C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三棱錐ABC-A1B1C1中,△ABC是邊長(zhǎng)為2的等邊三角形,AA1=4,A1在底面ABC上的射影為BC的中點(diǎn)E,D是B1C1的中點(diǎn).
(Ⅰ)證明:A1D⊥A1C;
(Ⅱ)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)α,β是兩個(gè)不同的平面,l是直線且l?α,則“α∥β”是“l(fā)∥β”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知F1,F(xiàn)2分別是長(zhǎng)軸長(zhǎng)為2$\sqrt{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),A1,A2是橢圓C的左右頂點(diǎn),P為橢圓上異于A1,A2的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與OM的斜率之積恒為-$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)N,點(diǎn)N橫坐標(biāo)的取值范圍是(-$\frac{1}{4}$,0),求線段AB長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案