20.在下列函數(shù)中,以π為最小正周期,且在(0,$\frac{π}{2}$)內(nèi)是增函數(shù)的是( 。
A.y=sin$\frac{x}{2}$B.y=cos2xC.y=sin(2x+$\frac{π}{4}$)D.y=tan(x-$\frac{π}{4}$)

分析 根據(jù)三角函數(shù)的圖象與性質(zhì),對(duì)選項(xiàng)中的函數(shù)進(jìn)行分析、判斷即可.

解答 解:對(duì)于A,y=sin$\frac{x}{2}$的最小正周期為4π,不滿足題意;
對(duì)于B,y=cos2x的最小正周期為π,但在(0,$\frac{π}{2}$)內(nèi)是減函數(shù),不滿足題意;
對(duì)于C,y=sin(2x+$\frac{π}{4}$)的最小正周期為π,但在(0,$\frac{π}{2}$)內(nèi)不是單調(diào)函數(shù),不滿足題意;
對(duì)于D,y=tan(x-$\frac{π}{4}$)的最小正周期為π,且在(0,$\frac{π}{2}$)內(nèi)是單調(diào)函數(shù),滿足題意.
故選:D.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖所示的多面體是經(jīng)過(guò)正四棱柱底面頂點(diǎn)B作截面A1BC1D1后形成的.已知AB=1,A1A=C1C=$\frac{1}{2}{D_1}$D,D1B與底面ABCD所成的角為$\frac{π}{3}$,則這個(gè)多面體的體積為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知:函數(shù)g(x)=x2-2x+1.設(shè)函數(shù)f(x)=$\frac{g(x)}{x}$
(1)若不等式f(2x)-k•2x≥0在x∈[-1,1]時(shí)恒成立,求實(shí)數(shù)k的取值范圍;
(2)如果關(guān)于x的方程f(|2x-1|)+t•($\frac{4}{|{2}^{x}-1|}$-3)=0有三個(gè)相異的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,已知atanA+btanB=(a+b)tan$\frac{A+B}{2}$,試判斷此三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在2014年初上海市人才招聘會(huì)上,有A、B兩家公司分別開出它們招聘的工資標(biāo)準(zhǔn):
A公司允諾:第一年月工資3000元,以后每年比上一年月工資增加500元;
B公司允諾:第一年月工資3500元,以后每年比上一年月工資增加8%;
小李選擇了A公司,小張選擇了B公司,試問(wèn):
(1)若小李和小張分別在A、B兩公司連續(xù)工作6年,第6年,小李和小張誰(shuí)的月工資高?
(2)若小李和小張分別在A、B兩公司連續(xù)工作10年,這10年小李和小張的總收入誰(shuí)高?((1.08)10≈2.16)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知正方形ABCD,PA⊥平面ABCD,AB=1,AP=$\sqrt{2}$,點(diǎn)M在PC上,則AM+DM的最小值為1+$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.二項(xiàng)式(1-2x)5展開式中系數(shù)最大項(xiàng)是80x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在等差數(shù)列{an}中,
(1)已知a6=10,S5=5,求a8和S8
(2)已知前3項(xiàng)和為12,前3項(xiàng)積為48,且d>0,求a1
(3)已知前3項(xiàng)依次為a,4,3a,前k項(xiàng)和Sk=2550,求a及k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.對(duì)于函數(shù)f(x),若存在常數(shù)a≠0,使得x取定義域內(nèi)的每一個(gè)值,都有f(x)=-f(2a-x),則稱f(x)為“準(zhǔn)奇函數(shù)”.給定下列函數(shù):①f(x)=$\sqrt{x}$;②f(x)=ex;③f(x)=cos(x+1);④f(x)=tanx.其中的“準(zhǔn)奇函數(shù)”的有( 。
A.①③B.②③C.②④D.③④

查看答案和解析>>

同步練習(xí)冊(cè)答案