1.若點(diǎn)A(3,-2),B(5,-4),則線段AB的垂直平分線方程是( 。
A.x-y-7=0B.y-x-7=0C.2x-y-11=0D.x+2y+2=0

分析 分別求出線段AB的中點(diǎn)C以及直線AB的斜率kAB,從而得出線段AB的垂直平分線的斜率k,利用點(diǎn)斜式寫出線段AB的垂直平分線方程.

解答 解:∵點(diǎn)A(3,-2),B(5,-4),
∴AB的中點(diǎn)為C(4,-3),
又直線AB的斜率為kAB=$\frac{-4-(-2)}{5-3}$=-1,
∴線段AB的垂直平分線的斜率為k=1,
∴線段AB的垂直平分線的方程為:
y+3=1×(x-4),整理得:x-y-7=0.
故選:A.

點(diǎn)評(píng) 本題考查了直線方程的求法問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=$\frac{{x{a^x}}}{|x|}$(0<a<1)的圖象的大致形狀是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某校高三文科500名學(xué)生參加了3月份的高考模擬考試,學(xué)校為了了解高三文科學(xué)生的歷史、地理學(xué)習(xí)情況,從500名學(xué)生中抽取100名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,抽出的100名學(xué)生的地理、歷史成績(jī)?nèi)绫恚?br />
歷史      地理[80,100][60,80)[40,60)
[80,100]8m9
[60,80)9n9
[40,60)8157
(Ⅰ) 若歷史成績(jī)?cè)赱80,100]區(qū)間的占30%,
(i)求m,n的值;
(ii)估計(jì)歷史和地理的平均成績(jī)及方差(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并估計(jì)哪個(gè)學(xué)科成績(jī)更穩(wěn)定;
(Ⅱ)在地理成績(jī)?cè)赱60,80)區(qū)間的學(xué)生中,已知m≥10,n≥10,求事件“|m-n|≤5”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{3}$)的圖象分別向左和向右移動(dòng)$\frac{π}{3}$之后的圖象的對(duì)稱中心重合,則正實(shí)數(shù)ω的最小值是( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}各項(xiàng)均為正數(shù),滿足an+12-2an+1=an2+2an,a1=2,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{n+1}{(n+2)^{2}{a}_{n}^{2}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N*,都有Tn<$\frac{5}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.有一個(gè)質(zhì)地均勻的四面體玩具,四個(gè)面分別標(biāo)注了數(shù)字1、2、3、4,甲、乙兩位學(xué)生進(jìn)行如下游戲:甲先拋擲一次,記下四面體朝下的數(shù)字為,再由乙拋擲一次,朝下數(shù)字為b,若|a-b|≤1就稱甲乙兩人“默契配合”,則甲、乙兩人“默契配合”的概率為(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)?shù)據(jù)a1,a2,a3,a4,a5的方差為10,平均數(shù)為3,則數(shù)據(jù)2a1-1,2a2-1,2a3-1,2a4-1,2a5-1的標(biāo)準(zhǔn)差和平均數(shù)分別是( 。
A.2$\sqrt{10}$,5B.40,5C.2$\sqrt{10}$,3D.40,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)數(shù)列{an}和{bn}分別是等差數(shù)列與等比數(shù)列,且a1=b1=9,a7=b7=1,則以下結(jié)論正確的是( 。
A.a3<a4B.a4>b4C.a4<b4D.b3<b4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若tan($\frac{π}{4}$-α)=-$\frac{1}{3}$,則sin(2α+$\frac{π}{4}$)的值為( 。
A.$\frac{7\sqrt{2}}{10}$B.$\frac{1}{5}$C.$\frac{\sqrt{2}}{10}$D.$\frac{7}{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案