【題目】如圖,在三棱柱中,邊長為的正方形,,

1)求證:平面;

2)求二面角的余弦值;

3)證明:在線段上存在點,使得,并求的值。

【答案】1)證明見解析;(23)證明見解析;

【解析】

1)根據(jù)所給線段長度,由勾股定理逆定理可得,結合正方形中的垂直關系,利用線面垂直的判定定理即可判斷平面.

2)以為原點建立空間直角坐標系,寫出各個點的坐標,求得平面與平面的法向量,根據(jù)向量的數(shù)量積運算即可求得向量夾角的余弦值.

3)假設在線段上存在點,設出點的坐標,根據(jù)垂直時的向量坐標運算求得點的坐標,即可證明存在點;根據(jù)相似,即可求得的值.

1)因為邊長為的正方形, ,,

,

又正方形,

所以平面

2)以為原點,以所在直線為,所在直線為,所在直線為,建立如圖所示的空間直角坐標系

,,,

所以,,

設平面的法向量為,平面的法向量為,

代入可得,令則解得

所以

同理代入可得,令則解得

所以

由圖可知, 平面與平面形成的二面角為銳二面角

所以二面角的余弦值為

3)證明:假設在線段上存在點,使得,,,如下圖所示:

,則由,,所以

,,,所以

所以

所以,

因為

所以

,化簡可得

解得

即在線段上存在點,使得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左、右焦點分別為,上頂點為,過點垂直的直線交軸負半軸于點,且恰是的中點,若過三點的圓恰好與直線相切.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=BC,點M為棱A1B1的中點.

求證:(1AB∥平面A1B1C;

2)平面C1CM⊥平面A1B1C

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,過焦點且垂直于x軸的直線被橢圓截得的線段長為3.

(1)求橢圓的方程;

(2)動直線與橢圓交于A,B兩點,在平面上是否存在定點P,使得當直線PA與直線PB的斜率均存在時,斜率之和是與無關的常數(shù)?若存在,求出所有滿足條件的定點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】運輸公司年有萬輛公交車,計劃年投入輛新型號公交車,以后每年投入的新型號公交車數(shù)量均比上年增加.

1年應投入多少輛新型號公交車?

2)從年到年間共投入多少輛新型號公交車?

3)從哪一年開始,該公司新型號公交車總量超過該公司公交車總量的?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,點是直線l上的動點,若在圓C上總存在不同的兩點A,B使得,則的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的離心率為,橢圓軸交于兩點,且

(1)求橢圓的方程;

(2)設點是橢圓上的一個動點,且點軸的右側,直線與直線交于兩點,若以為直徑的圓與軸交于,求點橫坐標的取值范圍及的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個不同的紅球和個不同的白球,放入同一個袋中,現(xiàn)從中取出個球.

1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少種不同的取法;

2)取出一個紅球記分,取出一個白球記分,若取出個球的總分不少于分,則有多少種不同的取法;

3)若將取出的個球放入一箱子中,記“從箱子中任意取出個球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個紅球并且恰有一次取到個白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,.為線段的中點.

1)證明:;

2)求與平面所成的角的正弦值.

查看答案和解析>>

同步練習冊答案