1.已知sinα,cosα是方程8x2+6kx+1=0的兩個(gè)根,求實(shí)數(shù)k的值.

分析 利用根與系數(shù)之間的關(guān)系,得到關(guān)于k的方程,求出實(shí)數(shù)k的值,已知判別式大于等于0得答案.

解答 解:∵sinα,cosα是方程8x2+6kx+1=0的兩個(gè)根,
∴$sinα+cosα=-\frac{3k}{4}$,①sinαcosα=$\frac{1}{8}$,②
①兩邊平方得:1+2sinαcosα=$\frac{9}{16}{k}^{2}$,
把②代入解得:$k=±\frac{2\sqrt{5}}{3}$,
又∵△≥0,得:36k2-32≥0,即$k≤-\frac{2\sqrt{2}}{3}$或$k≥\frac{2\sqrt{2}}{3}$,
$k=±\frac{2\sqrt{5}}{3}$均符合,
故$k=±\frac{2\sqrt{5}}{3}$.

點(diǎn)評(píng) 本題主要考查根與系數(shù)之間的關(guān)系的應(yīng)用,利用三角函數(shù)的基本關(guān)系式是解決本題的關(guān)鍵,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.我國民族數(shù)學(xué)文化十分豐富,有一位教師帶領(lǐng)學(xué)習(xí)興趣小組的同學(xué)們到云南考察后,根據(jù)《張丘建算經(jīng)》上的名題“有女不善織”編寫一道數(shù)學(xué)題:阿婆若將24匹3丈6尺長的布剪成八段,每段依次減少1丈7尺,則第八段為65尺(注:古制1匹=4丈,1丈=10尺).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知0<α<$\frac{π}{2}$,tanα=$\frac{4}{3}$,tan(α-β)=-$\frac{1}{3}$,則tanβ=3;$\frac{cos2β•sinβ}{\sqrt{2}cos(β+\frac{π}{4})}$=$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.y=$\frac{1}{2}$sin(6x+1)的最大值( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.6D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.不等式$\frac{1}{1-x}$<x+1的解集是{x|x>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.根據(jù)下面數(shù)列的前幾項(xiàng),寫出數(shù)列的一個(gè)通項(xiàng)公式.
(1)1,1,$\frac{5}{7}$,$\frac{7}{15}$,$\frac{9}{31}$,…
(2)2,22,222,2222,…;
(3)3,0,-3,0,3,…

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知{an}是等差數(shù)列且公差d>0,a1=1且a2,a4,a8是等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的前n項(xiàng)和為Sn,求數(shù)列{$\frac{1}{{S}_{n}}$}的前2016項(xiàng)和T2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.商家經(jīng)銷某種商品,原售價(jià)為100元/件,每日可售出100件.商家擬降價(jià)促銷,根據(jù)以往經(jīng)驗(yàn),若每件降價(jià)x,(x∈N*)元,可增加3x件的銷售量,則商家應(yīng)怎樣確定降價(jià)范圍,可使每日銷售額比未降價(jià)時(shí)有所增加?降價(jià)多少時(shí)每日銷售額最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.奇函數(shù)y=f(x)在區(qū)間[2,7]上是增函數(shù),且最小值為-3,那么f(x)在區(qū)間[-7,-2]上( 。
A.是增函數(shù)且最小值為3B.是增函數(shù)且最大值為3
C.是減函數(shù)且最小值為3D.是減函數(shù)且最大值為3

查看答案和解析>>

同步練習(xí)冊(cè)答案