18.已知直三棱柱ABC-A1B1C1中,AC⊥BC,AC=2,BC=3,AA1=4,則此三棱柱的體積等于( 。
A.24B.12C.8D.4

分析 三棱柱為直三棱柱,則側(cè)棱垂直于底面,故體積V=SABC•AA1

解答 解:∵三棱柱為直三棱柱,則側(cè)棱垂直于底面;
∴AA1⊥面ABC;
V=SABC•AA1=$\frac{1}{2}$×2×3×4=12.
故選:B

點評 本題主要考查了直三棱柱的體積公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知矩陣M=$[{\begin{array}{l}1&0\\ 0&{-1}\end{array}}]$.
(1)求矩陣M的特征值和特征向量;
 (2)設(shè)$\vec β$=$[{\begin{array}{l}2\\ 3\end{array}}]$,求M99$\overrightarrow{β}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=xex-ex+1的單調(diào)遞減區(qū)間是( 。
A.(-∞,e-1)B.(1,e)C.(e,+∞)D.(e-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,以橢圓的一個短軸端點及兩個焦點構(gòu)成的三角形的面積為$\sqrt{3}$,圓C方程為(x-a)2+(y-b)2=($\frac{a}$)2
(1)求橢圓及圓C的方程;
(2)過原點O作直線l與圓C交于A,B兩點,若$\overrightarrow{CA}$•$\overrightarrow{CB}$=-2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx+x.
(1)求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)若方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.求證:
(1)C1O∥面AB1D1
(2)面OC1D∥面AB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從集合{x|lgx•lg$\frac{x}{2}$•lg$\frac{x}{3}$•lg$\frac{x}{4}$•lg$\frac{x}{5}$=0}中任取3個元素,把這3個元素按一定順序排列可以構(gòu)成(  )個等差數(shù)列.
A.3B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式-x2+2x+3≥0的解集為[-1,3] .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,正方體ABCD-A1B1C1D1中,棱長AB=1.過點A1的平面α與正方體的面相交,交線圍成一個正三角形.
(1)在圖中畫出這個正三角形(不必說明畫法和理由);
(2)平面α將該正方體截成兩個幾何體,求體積較大的幾何體的體積和表面積.

查看答案和解析>>

同步練習(xí)冊答案