11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,}&{x>0}\\{{2}^{x},}&{x≤0}\end{array}\right.$若f(1)+f(a)=2,則a的值為4.

分析 根據(jù)函數(shù)的表達(dá)式先求出f(1),從而求出f(a)的值,求出a即可.

解答 解:f(1)=log21=0,
即由f(1)+f(a)=2得f(a)=2-f(1)=2-0=2,
若a>0,則由f(a)=log2a=2,得a=4,
若a≤0,則由f(a)=2a=2,得a=1,不成立,
綜上a=4,
故答案為:4.

點(diǎn)評 本題主要考查函數(shù)值的計(jì)算,根據(jù)分段函數(shù)的表達(dá)式直接代入解方程即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在區(qū)間[-1,m]上隨機(jī)選取一個(gè)數(shù)x,若x≤1的概率為$\frac{2}{5}$,則實(shí)數(shù)m的值為(  )
A.$\frac{3}{2}$B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)f(x)=2sin2(2x+$\frac{π}{6}$)-sin(4x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{12}$個(gè)單位后,得到新函數(shù)圖象的對稱軸方程為( 。
A.x=$\frac{kπ}{4}$(k∈Z)B.x=$\frac{kπ}{4}$-$\frac{π}{8}$(k∈Z)C.x=$\frac{kπ}{4}$+$\frac{π}{8}$(k∈Z)D.x=$\frac{kπ}{4}$+$\frac{π}{16}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,O(0,0),D(0,2),線段OD的中點(diǎn)為橢圓C的一個(gè)頂點(diǎn),郭點(diǎn)D且斜率為k的直線l交橢圓C于A,B兩點(diǎn).
(1)設(shè)線段AB的中點(diǎn)為G,求直線OG的斜率與k的乘積;
(2)若OA⊥OB,且A、B在x軸上的射影分別為A′、B′,求|AA′|•|BB′|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.利用求曲邊梯形面積的方法計(jì)算y=x,直線x=a,x=b和x軸所圍成的曲邊梯形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x+sinπx,則f(${\frac{1}{2017}}$)+f(${\frac{2}{2017}}$)+f(${\frac{3}{2017}}$)+…+f(${\frac{4033}{2017}}$)的值為4033.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.定義:使函數(shù)y=f(x)的函數(shù)值為零的x的值叫函數(shù)y=f(x)的幸運(yùn)點(diǎn)(如:y=x2-2x+1的幸運(yùn)點(diǎn)為x=1,y=x2-2x-3的幸運(yùn)點(diǎn)為x=3,x=-1;y=x+1的幸運(yùn)點(diǎn)為x=-1),設(shè)f(x)=$\left\{\begin{array}{l}{(x+1)^{2}-3(x≤1)}\\{\frac{1}{x}(x>1)}\end{array}\right.$,若g(x)=f(x)-b恰好有兩個(gè)幸運(yùn)點(diǎn),則實(shí)數(shù)b的取值范圍為(-3,0]∪{1}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=log2(x-m),其中m∈R.
(1)若函數(shù)f(x)在區(qū)間(2,3)內(nèi)有一個(gè)零點(diǎn),求m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間[1,t](t>1)上的最大值與最小值之差為2,且f(t)>0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.電視劇《人民的名義》中有一個(gè)低矮的接待上訪服務(wù)窗口,假設(shè)群眾辦理業(yè)務(wù)所需的時(shí)間互相獨(dú)立,且都是10分鐘的整數(shù)倍,對以往群眾辦理業(yè)務(wù)所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:
辦理業(yè)務(wù)所需的時(shí)間(分)1020304050
頻率0.30.30.20.10.1
假設(shè)排隊(duì)等待辦理業(yè)務(wù)的群眾不少于3人,從第一個(gè)群眾開始辦理業(yè)務(wù)時(shí)開始計(jì)時(shí).
(Ⅰ)估計(jì)第三個(gè)群眾恰好等待40分鐘開始辦理業(yè)務(wù)的概率;
(Ⅱ)X表示至第20分鐘末已辦理完業(yè)務(wù)的群眾人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案