【題目】假設(shè)小明訂了一份報紙,送報人可能在早上6:30﹣7:30之間把報紙送到,小明離家的時間在早上7:00﹣8:00之間,則他在離開家之前能拿到報紙的概率( )
A.
B.
C.
D.
【答案】D
【解析】解:設(shè)送報人到達的時間為x,小明離家的時間為y,記小明離家前能看到報紙為事件A; 以橫坐標表示報紙送到時間,以縱坐標表示小明離家時間,建立平面直角坐標系,
小明離家前能得到報紙的事件構(gòu)成區(qū)域如圖示:
由于隨機試驗落在方形區(qū)域內(nèi)任何一點是等可能的,所以符合幾何概型的條件.
根據(jù)題意,只要點落到陰影部分,就表示小明在離開家前能得到報紙,即事件A發(fā)生,
所以P(A)= = ,
故選:D.
設(shè)送報人到達的時間為x,小明離家的時間為y,則(x,y)可以看成平面中的點,分析可得由試驗的全部結(jié)果所構(gòu)成的區(qū)域并求出其面積,同理可得事件A所構(gòu)成的區(qū)域及其面積,由幾何概型公式,計算可得答案.
科目:高中數(shù)學 來源: 題型:
【題目】朱載堉(1536~1611),是中國明代一位杰出的音樂家、數(shù)學家和天文歷算家,他的著作《律學新說》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一組音(八度)分成十二個半音音程的律制,各相鄰兩律之間的頻率之比完全相等,亦稱“十二等程律”.即一個八度13個音,相鄰兩個音之間的頻率之比相等,且最后一個音是最初那個音的頻率的2倍.設(shè)第三個音的頻率為,第七個音的頻率為,則=
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,a1=,其前n項和為Sn,且Sn=an+1- (n∈N*).
(1)求an,Sn;
(2)設(shè)bn=log2(2Sn+1)-2,數(shù)列{cn}滿足cn·bn+3·bn+4=1+(n+1)(n+2)·2bn,數(shù)列{cn}的前n項和為Tn,求使4Tn>2n+1-成立的最小正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD= ,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點.
(1) 求直線PB與平面POC所成角的余弦值;
(2)線段上是否存在一點,使得二面角的余弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個焦點為,離心率為. 點為圓上任意一點, 為坐標原點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)記線段與橢圓交點為,求的取值范圍;
(Ⅲ)設(shè)直線經(jīng)過點且與橢圓相切, 與圓相交于另一點,點關(guān)于原點的對稱點為,試判斷直線與橢圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且a2=8,Sn= ﹣n﹣1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】A、B是治療同一種疾病的兩種藥,用若干試驗組進行對比試驗.每個試驗組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效.若在一個試驗組中,服用A有效的小白鼠的只數(shù)比服用B有效的多,就稱該試驗組為甲類組.設(shè)每只小白鼠服用A有效的概率為 ,服用B有效的概率為 .
(Ⅰ)求一個試驗組為甲類組的概率;
(Ⅱ)觀察3個試驗組,用ξ表示這3個試驗組中甲類組的個數(shù),求ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,點在直線上.數(shù)列 滿足 ,且,前11項和為.
(1)求數(shù)列、的通項公式;
(2)設(shè)是否存在,使得成立?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量a=(cos ωx,1),b=,函數(shù)f(x)=a·b,且f(x)圖象的一條對稱軸為x=.
(1)求f的值;
(2)若f,f,且α,β∈,求cos(α-β)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com