【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(1)求證:平面;
(2)求平面與平面所成二面角的正弦值;
(3)若點在線段上,且直線與平面所成角的正弦值為,求線段的長.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)取的中點,連接、,證明四邊形為平行四邊形,可得出,即,利用線面平行的判定定理可得出結(jié)論;
(2)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標系,利用空間向量法可計算出平面與平面所成二面角的余弦值,進而可得出其正弦值;
(3)設(shè),,計算出的坐標,結(jié)合直線與平面所成角的正弦值為求得實數(shù)的值,進而可求得的長.
(1)如下圖所示,設(shè),取的中點,連接、,
四邊形為矩形,,為的中點,
為的中點,且,
,,且,
所以,四邊形為平行四邊形,則,即,
平面,平面,平面;
(2)四邊形為矩形,則,平面平面,平面平面,平面,平面,
取為原點,所在直線為軸,所在直線為軸建立如圖所示的空間直角坐標系,
則、、、,
設(shè)平面的法向量為,,,
由,令,則,,,
設(shè)平面的法向量為,,,
由,令,則,,則,
,,
因此,平面與平面所成二面角的正弦值為;
(3)點在線段上,設(shè),
,
由題意得,
整理得,,解得,此時,則.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),,則下列說法正確的有( )
A.不等式的解集為;
B.函數(shù)在單調(diào)遞增,在單調(diào)遞減;
C.當時,總有恒成立;
D.若函數(shù)有兩個極值點,則實數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,側(cè)面底面,為棱的中點,為棱上任意一點,且不與點、點重合..
(1)求證:平面平面;
(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的首項, , .
(1)求證:數(shù)列為等比數(shù)列;
(2)記,若Sn<100,求最大正整數(shù)n;
(3)是否存在互不相等的正整數(shù)m,s,n,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請給以證明;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】哈市某公司為了了解用戶對其產(chǎn)品的滿意度,從南崗區(qū)隨機調(diào)查了40個用戶,根據(jù)用戶對其產(chǎn)品的滿意度的評分,得到用戶滿意度評分的頻率分布表.
滿意度評分分組 | |||||
頻數(shù) | 2 | 8 | 14 | 10 | 6 |
(1)在答題卡上作出南崗區(qū)用戶滿意度評分的頻率分布直方圖;
南崗區(qū)用戶滿意度評分的頻率分布直方圖
(2)根據(jù)用戶滿意度評分,將用戶的滿意度評分分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
估計南崗區(qū)用戶的滿意度等級為不滿意的概率;
(3)求該公司滿意度評分的中位數(shù)(保留小數(shù)點后兩位).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若在點處的切線與直線垂直,求函數(shù)在點處的切線方程;
(2)若對于,恒成立,求正實數(shù)的取值范圍;
(3)設(shè)函數(shù),且函數(shù)有極大值點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】通過隨機詢問200名性別不同的大學生是否愛好踢毽子運動,計算得到統(tǒng)計量的觀測值,參照附表,得到的正確結(jié)論是( )
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
A.有97.5%以上的把握認為“愛好該項運動與性別有關(guān)”
B.有97.5%以上的把握認為“愛好該項運動與性別無關(guān)”
C.在犯錯誤的概率不超過5%的前提下,認為“愛好該項運動與性別有關(guān)”
D.在犯錯誤的概率不超過5%的前提下,認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,.
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)當且時.
①若有兩個極值點,(),求證:;
②若對任意的,都有成立,求正實數(shù)t的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com