【題目】如圖,已知AB是⊙O的直徑,點D是⊙O上一點,過點D作⊙O的切線,交AB的延長線于點C,過點C作AC的垂線,交AD的延長線于點E.
(1)求證:△CDE為等腰三角形;
(2)若AD=2, = ,求⊙O的面積.
【答案】
(1)證明:連接線段DB,
因為DC為⊙O的切線,
所以∠DAB=∠BDC,
又因為AB為⊙O的直徑,BD⊥AE,
所以∠CDE+∠CDB=∠DAB+∠AEC=90°,
所以∠CDE=∠AEC,
從而△CDE為等腰三角形.
(2)解:由(1)知CD=CE,
因為DC為⊙O的切線,
所以CD2=CBCA,
所以CE2=CBCA,即 = = .
又Rt△ABD∽Rt△AEC,故 = = .
因為AD=2,所以BD=1,AB= ,S=π = ,
所以⊙O的面積為 .
【解析】(1)連接線段DB,利用垂直關系證明∠CDE=∠AEC,即可得出△CDE為等腰三角形;(2)利用相似三角形求出圓O的直徑,即可求出圓的面積.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為{x|x∈R,且x≠0},對定義域內的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且當x>1時,f(x)>0.
(1)求證:f(x)是偶函數(shù);
(2)求證:f(x)在(0,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設定義在區(qū)間[﹣m,m]上的函數(shù)f(x)=log2 是奇函數(shù),且f(﹣ )≠f( ),則nm的范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市理論預測2010年到2014年人口總數(shù)與年份的關系如下表所示
年份2010+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬) | 5 | 7 | 8 | 11 | 19 |
(1)請根據(jù)上表提供的數(shù)據(jù),求出y關于x的線性回歸方程;
(2) 據(jù)此估計2015年該城市人口總數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (其中α為參數(shù)),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.
(1)若A,B為曲線C1 , C2的公共點,求直線AB的斜率;
(2)若A,B分別為曲線C1 , C2上的動點,當|AB|取最大值時,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某中學為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識的競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐、規(guī)定:每場知識競賽前三名的得分都分別為(,且);選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場比賽中獲得第一名,則下列推理正確的是( )
A. 每場比賽第一名得分為4 B. 甲可能有一場比賽獲得第二名
C. 乙有四場比賽獲得第三名 D. 丙可能有一場比賽獲得第一名
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com