【題目】如圖所示,在四棱錐中,垂直于正方形所在的平面,在這個(gè)四棱錐的所有表面及面、面中,一定互相垂直的平面有_________對(duì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=(ex-a)2+(e-x-a)2(a≥0).
(1)將f(x)表示成u(其中u=)的函數(shù);
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)D是⊙O上一點(diǎn),過點(diǎn)D作⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)C,過點(diǎn)C作AC的垂線,交AD的延長(zhǎng)線于點(diǎn)E.
(1)求證:△CDE為等腰三角形;
(2)若AD=2, = ,求⊙O的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的偶函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷并證明函數(shù)在上單調(diào)性;
(3)求函數(shù)在上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2 sinθ.
(1)求圓C的直角做標(biāo)方程;
(2)圓C的圓心為C,點(diǎn)P為直線l上的動(dòng)點(diǎn),求|PC|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓,稱圓為橢圓的“伴隨圓”.已知點(diǎn)是橢圓上的點(diǎn)
(1)若過點(diǎn)的直線與橢圓有且只有一個(gè)公共點(diǎn),求被橢圓的伴隨圓所截得的弦長(zhǎng):
(2)是橢圓上的兩點(diǎn),設(shè)是直線的斜率,且滿足,試問:直線是否過定點(diǎn),如果過定點(diǎn),求出定點(diǎn)坐標(biāo),如果不過定點(diǎn),試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增,命題q:關(guān)于x的不等式mx2+4(m-2)x+4>0的解集為R.若p∨q為真命題,p∧q為假命題,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.
(1)求A∩(UB);
(2)若A∪C=C,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com