17.已知定義在R上的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件
(1)f(x)+f(2-x)=0,
(2)f(x)=(-2-x)
(3)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1,0]}\\{1-x,x∈(0,1]}\end{array}\right.$
則函數(shù)f(x)與函數(shù)g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{\frac{1}{2}}x,x>0}\end{array}\right.$的圖象在區(qū)間[-3,3]上公共點(diǎn)個(gè)數(shù)為6個(gè).

分析 根據(jù)f(x)的周期性和對稱性做出f(x)在[-3,3]上的函數(shù)圖象,再做出g(x)的函數(shù)圖象,根據(jù)圖象判斷交點(diǎn)個(gè)數(shù).

解答 解:∵f(x)=f(-2-x),∴f(x)的圖象關(guān)于x=-1對稱,
又∵f(x)+f(2-x)=0,∴f(x)的圖象關(guān)于點(diǎn)(1,0)對稱,
做出f(x)和g(x)在[-3,3]上的函數(shù)圖象如圖所示:

由圖象可知當(dāng)x≤0時(shí),f(x)與g(x)的圖象有4個(gè)交點(diǎn),
設(shè)g(x)在(1,0)處的切線斜率為k,則k=-$\frac{1}{ln2}$<-1,又g(2)=f(2)=-1,
∴當(dāng)x>0時(shí),f(x)與g(x)只有兩個(gè)交點(diǎn)(1,0)和(2,-1).
綜上,f(x)與g(x)在[-3,3]上有6個(gè)交點(diǎn).
故答案為:6.

點(diǎn)評(píng) 本題考查了分段函數(shù)的圖象,函數(shù)性質(zhì)的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x-x2
(1)求x<0時(shí)f(x)的解析式;
(2)問是否存在正數(shù)a,b,當(dāng)x∈[a,b]時(shí),g(x)=f(x),且g(x)的值域?yàn)閇$\frac{a}{2}$,$\frac{2}$]?若存在,求出所有的a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.曲線的極坐標(biāo)方程為ρcosθ=2,它的直角坐標(biāo)方程是x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ln(1+x)-$\frac{ax}{x+1}$(a>0).
(1)若函數(shù)在x=1處的切線與x軸平行,求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范圍;
(3)證明:($\frac{2016}{2017}$)2017<$\frac{1}{e}$(e是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中是假命題的是(  )
A.?m∈R,使$f(x)=(m-1)•{x^{{m^2}-4m+3}}$是冪函數(shù)
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.?φ∈R,函數(shù)f(x)=sin(x+φ)都不是偶函數(shù)
D.?a>0,函數(shù)f(x)=ln2x+lnx-a有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知θ∈(0,$\frac{π}{2}$),則y═$\frac{1}{si{n}^{2}θ}+\frac{9}{co{s}^{2}θ}$的最小值為( 。
A.6B.10C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+bx(其中常數(shù)a,b∈R),g(x)=f(x)-f′(x)是奇函數(shù),
(1)求f(x)的表達(dá)式;
(2)求g(x)在[1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.角α的終邊上一個(gè)點(diǎn)P的坐標(biāo)為(4a,-3a)(a<0),則2sinα+cosα=${\;}^{\;}\frac{2}{5}{\;}^{\;}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)向量$\overrightarrow{a}$、$\overrightarrow$均為單位向量且夾角為120°,則($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=-$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案