18.已知f(x)=$\sqrt{3}$sinωx+cosωx(ω>0),x∈R,在曲線y=f(x)與直線y=1的交點中,若相鄰交點距離的最小值為$\frac{π}{3}$,則f(x)的最小正周期為π.

分析 利用和差公式可得:函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$),令2sin(ωx+$\frac{π}{6}$)=1,化為sin(ωx+$\frac{π}{6}$)=$\frac{1}{2}$,解得ωx+$\frac{π}{6}$=2kπ+$\frac{π}{6}$或ωx+$\frac{π}{6}$=2kπ+$\frac{5π}{6}$,k∈Z.由于在曲線y=f(x)與直線y=1的交點中,相鄰交點距離的最小值是$\frac{π}{3}$,可得x2-x1=$\frac{2π}{3ω}$=$\frac{π}{3}$,即可得出.

解答 解:函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx=2($\frac{\sqrt{3}}{2}$sinωx+$\frac{1}{2}$cosωx)=2sin(ωx+$\frac{π}{6}$),
令2sin(ωx+$\frac{π}{6}$)=1,
化為sin(ωx+$\frac{π}{6}$)=$\frac{1}{2}$,
解得ωx+$\frac{π}{6}$=2kπ+$\frac{π}{6}$或ωx+$\frac{π}{6}$=2kπ+$\frac{5π}{6}$,k∈Z.
∵在曲線y=f(x)與直線y=1的交點中,相鄰交點距離的最小值是$\frac{π}{3}$,
∴$\frac{5π}{6}$-$\frac{π}{6}$+2kπ=ω(x2-x1),令k=0,
∴x2-x1=$\frac{2π}{3ω}$=$\frac{π}{3}$,
解得ω=2.
∴T=$\frac{2π}{2}$=π.
故答案為:π.

點評 本題考查了和差公式、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的方程的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系中,已知點M(0,-1),N(0,1),動點P滿足PM=$\sqrt{2}$PN.
(1)求點P的軌跡C1的方程,并說明是什么曲線
(2)二次函數(shù)f(x)=x2+2x-3的圖象與兩坐標(biāo)軸交于三點,過這三點的圓記為C2,求證C1、C2有兩個公共點,并求出這兩個公共點間距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知中心在原點,焦點在x軸上的橢圓C的離心率為$\frac{1}{2}$,且經(jīng)過點M(1,$\frac{3}{2}$).求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,是一個長方體截去一個角所得多面體的直觀圖以及它的正視圖(單位:cm),其中BC=4cm,EA=2cm.
(1)按照畫三視圖的要求畫出該多面體的側(cè)視圖和俯視圖;
(2)按照給出的尺寸,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點.
(Ⅰ)求證:AF∥平面BCE;
(Ⅱ)求證:平面BCE⊥平面CDE;
(Ⅲ)若AB=1,求四棱錐C-ABED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R
(1)求函數(shù)f(x)在[0,$\frac{π}{2}$]上的值域;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=2,b=1,△ABC的面積為$\frac{\sqrt{3}}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,在棱長為1的正方體ABCD-A1B1C1D1中,M,N分別為AB,A1D1的中點.
(1)求證:MN∥平面A1BC1;
(2)求三棱錐B1-A1BC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow a=({sin({2x+\frac{π}{6}}),1})$,$\overrightarrow b=({\sqrt{3},cos({2x+\frac{π}{6}})})$,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,A、B、C的對邊分別是a、b、c,若$f(A)=\sqrt{3},sinC=\frac{1}{3},a=3$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且$tanB=\frac{{\sqrt{3}ac}}{{{a^2}+{c^2}-{b^2}}}$.
(1)求∠B;
(2)求函數(shù)$f(x)=sinx+2sinBcosx,x∈[0,\frac{π}{2}]$的值域及單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案