【題目】已知點、分別是橢圓的上、下頂點,以為直徑作圓,直線與橢圓交于、兩點,與圓交于、兩點.
(1)若直線的傾斜角為,求(為坐標(biāo)原點)的面積;
(2)若點、分別在直線、上,且,求直線的斜率.
【答案】(1);(2)或.
【解析】
(1)將直線的方程與橢圓的方程聯(lián)立,求出點的坐標(biāo),計算出點的橫坐標(biāo),利用三角形的面積公式可計算出的面積;
(2)設(shè)直線的方程為,與橢圓的方程聯(lián)立,求出點的坐標(biāo),進(jìn)而可求點的坐標(biāo),由可知直線、的斜率互為相反數(shù),利用斜率公式可得出關(guān)于的方程,解出即可.
(1)依題意,可知,,直線.
聯(lián)立,消去可得,故.
將點橫坐標(biāo)代入直線的方程可得.
易知,故的面積;
(2)設(shè)直線,聯(lián)立,得,
設(shè),依題意,.
因為,所以,故:,則點.
若,則,即,
解得,即直線的斜率為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線的右頂點為A,右焦點為F,點B在雙曲線的右支上,矩形OFBD與矩形AEGF相似,且矩形OFBD與矩形AEGF的面積之比為2:1,則該雙曲線的離心率為
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓〔>b>0〕與拋物線有共同的焦點F,且兩曲線在第一象限的交點為M,滿足.
(1)求橢圓的方程;
(2)過點,斜率為的直線與橢圓交于兩點,設(shè),假設(shè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,昆明加大了特色農(nóng)業(yè)建設(shè),其中花卉產(chǎn)業(yè)是重要組成部分.昆明斗南毗鄰滇池東岸,是著名的花都,有“全國10支鮮花7支產(chǎn)自斗南”之說,享有“金斗南”的美譽.為進(jìn)一步了解鮮花品種的銷售情況,現(xiàn)隨機抽取甲、乙兩戶斗南花農(nóng),對其連續(xù)5日的玫瑰花日銷售情況進(jìn)行跟蹤調(diào)查,將日銷售量作為樣本繪制成莖葉圖如下,單位:扎(20支/扎).
(1)求甲、乙兩戶花農(nóng)連續(xù)5日的日均銷售量,并比較兩戶花農(nóng)連續(xù)5日銷售量的穩(wěn)定性;
(2)從兩戶花農(nóng)連續(xù)5日的銷售量中各隨機抽取一個,求甲的銷售量比乙的銷售量高的概率·
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知橢圓,若圓的一條切線與橢圓有兩個交點,且.
(1)求圓的方程;
(2)已知橢圓的上頂點為,點在圓上,直線與橢圓相交于另一點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,長軸長為4,且過點.
(1)求橢圓C的方程;
(2)過的直線l交橢圓C于兩點,過A作x軸的垂線交橢圓C與另一點Q(Q不與重合).設(shè)的外心為G,求證為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,直線,,與曲線所圍成的曲邊梯形的面積為.其中,且.
(1)當(dāng)時,恒成立,求實數(shù)的值;
(2)請指出,,的大小,并且證明;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是一塊平行四邊形園地,經(jīng)測量,.擬過線段上一點 設(shè)計一條直路(點在四邊形的邊上,不計直路的寬度),將該園地分為面積之比為的左,右兩部分分別種植不同花卉.設(shè)(單位:m).
(1)當(dāng)點與點重合時,試確定點的位置;
(2)求關(guān)于的函數(shù)關(guān)系式;
(3)試確定點的位置,使直路的長度最短.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com