8.函數(shù)f(x)=$\frac{1}{lg({2}^{x}+\frac{4}{{2}^{x}}+m)}$的定義域?yàn)镽,則實(shí)數(shù)m的范圍是(-3,+∞).

分析 由定義域?yàn)镽可得2x+$\frac{4}{{2}^{x}}$+m>0恒成立,且2x+$\frac{4}{{2}^{x}}$+m≠1.

解答 解:∵f(x)的定義域?yàn)镽,∴2x+$\frac{4}{{2}^{x}}$+m>0恒成立,且2x+$\frac{4}{{2}^{x}}$+m≠1.
∵2x+$\frac{4}{{2}^{x}}$≥2$\sqrt{4}$=4,∴m>-4.且m>-3.
∴m>-3.
故答案為(-3,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)的定義域,對(duì)數(shù)函數(shù)的性質(zhì),基本不等式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的圖象經(jīng)過(guò)點(diǎn)P($\frac{π}{12}$,0),圖象上與點(diǎn)P最近的一個(gè)最高點(diǎn)是Q($\frac{π}{3}$,5)
(1)求函數(shù)的解析式,
(2)畫(huà)出這個(gè)函數(shù)一個(gè)周期內(nèi)的圖象.并求出其遞減區(qū)間,
(3)若存在x∈($\frac{π}{3}$,$\frac{3π}{4}$)使得f(x)=3,求sin2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)=$\left\{\begin{array}{l}{2x+3a,x<2}\\{-x-a,x≥2}\end{array}\right.$若f(2-a)=f(2+a)(a≠0),則a的值為$-\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知α為銳角,cos(α+$\frac{π}{4}$)=-$\frac{4}{5}$,則sin(α-$\frac{π}{4}$)=( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,給出下列三個(gè)不等式:$\overrightarrow{AB}$$•\overrightarrow{AC}$>0,$\overrightarrow{BA}$$•\overrightarrow{BC}$>0,$\overrightarrow{CA}$$•\overrightarrow{CB}$>0,其中,能夠成立的不等式( 。
A.至多1個(gè)B.有且僅有1個(gè)C.至多2個(gè)D.至少2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某同學(xué)用計(jì)算器產(chǎn)生了兩個(gè)[0,1]之間的均勻隨機(jī)數(shù),分別記作x,y,當(dāng)y<x2時(shí),x>$\frac{1}{2}$的概率是( 。
A.$\frac{7}{24}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.以等腰直角△ABC的兩個(gè)底角頂點(diǎn)為焦點(diǎn),并且經(jīng)過(guò)另一頂點(diǎn)的橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2x-1,x<1}\\{\frac{1}{x},x≥1}\end{array}\right.$則f(f(2))=( 。
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列函數(shù)是正態(tài)分布密度函數(shù)的是( 。
A.f(x)=$\frac{1}{{\sqrt{2π}σ}}{e^{\frac{{{{(x-r)}^2}}}{2σ}}}$B.f(x)=$\frac{{\sqrt{2π}}}{2π}{e^{-\frac{x^2}{2}}}$
C.f(x)=$\frac{1}{{2\sqrt{2}π}}{e^{\frac{{{{(x-1)}^2}}}{4}}}$D.f(x)=$\frac{1}{{\sqrt{2π}}}{e^{\frac{x^2}{2}}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案