9.對任意的實(shí)數(shù)R,集合A={x|x2+x-6>0},B={-1,0,1,2,3,4}.則B∩∁RA=( 。
A.{2,3,4,5}B.{-1,0}C.{-1,0,1,2}D.{ 2,3,4}

分析 求出集合A的等價(jià)條件,結(jié)合集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:∵A={x|x2+x-6>0}={x|x>2或x<-3},
則∁RA={x|-3≤x≤2},
則B∩∁RA={-1,0,1,2},
故選:C

點(diǎn)評 本題主要考查集合的基本運(yùn)算,結(jié)合補(bǔ)集和交集的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.用輾轉(zhuǎn)相除法求108和45的最大公約數(shù)為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=ax3-2x的圖象過點(diǎn)P(-1,4),則曲線y=f(x)在點(diǎn)P處的切線方程為8x+y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.命題“存在x∈R,使得x2+x+1<0”的否定是:“對任意x∈R,均有x2+x+1<0”
C.已知y=f(x)是R上的可導(dǎo)函數(shù),則“f′(x0)=0”是“x0是函數(shù)y=f(x)的極值點(diǎn)”的必要不充分條件
D.命題“角α的終邊在第一象限角,則α是銳角”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).以點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.
(Ⅰ)將曲線C和直線l化為直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.正三角形ABC的邊長為1,點(diǎn)P、Q由點(diǎn)C出發(fā),分別沿線段CA、CB前進(jìn),CP與時(shí)間t(0<t≤1)的關(guān)系是|CP|=t2,CQ與時(shí)間t的關(guān)系是$|CQ|=\sqrt{t}$,記y為三角形CPQ的面積,則y的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下列命題:①若命題p:$\frac{1}{{x}^{2}-2x-8}$>0,則¬p:$\frac{1}{{x}^{2}-2x-8}$≤0;
②“?x∈R,x3-x2+1≤0“的否定是“?x∈R,x3-x2+1>0”;
③命題p:x≠2或y≠3,命題q:x+y≠5,則p是q的必要不充分條件;
④“在三角形ABC中,若sinA>sinB,則A>B”的逆命題是真命題.
正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合,且兩個(gè)坐標(biāo)系的單位長度相同,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcosa}\\{y=1+tsina}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=4cosθ.
(Ⅰ)若直線l的斜率為-1,求直線l與曲線C交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π);
(Ⅱ)若直線l與曲線C相交弦長為$2\sqrt{3}$,求直線l的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)log29=a,log35=b,用a,b的代數(shù)表示lg2=$\frac{2}{2+ab}$.

查看答案和解析>>

同步練習(xí)冊答案