15.如圖所示的程序框圖,運(yùn)行程序后,輸出的結(jié)果等于(  )
A.2B.3C.4D.5

分析 根據(jù)已知的程序框圖可得,該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量n的值,模擬程序的運(yùn)行過(guò)程,可得答案.

解答 解:第一次執(zhí)行循環(huán)體后,s=1,a=$\frac{1}{2}$,滿足繼續(xù)循環(huán)的條件,n=2;
第二次執(zhí)行循環(huán)體后,s=$\frac{3}{2}$,a=$\frac{2}{3}$,滿足繼續(xù)循環(huán)的條件,n=3;
第三次執(zhí)行循環(huán)體后,s=$\frac{13}{6}$,a=$\frac{3}{5}$,不滿足繼續(xù)循環(huán)的條件,
故輸出的n值為3,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)次數(shù)不多,或有規(guī)律可循時(shí),可采用模擬程序法進(jìn)行解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,B1C與BD所成的角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,在直二面角的棱上有A、B兩點(diǎn),直線AC、BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,則直線AB與CD所成角的余弦值為( 。
A.$\frac{{2\sqrt{29}}}{29}$B.$\frac{{\sqrt{29}}}{29}$C.$\frac{{5\sqrt{29}}}{29}$D.$\frac{{2\sqrt{203}}}{29}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的長(zhǎng)、短軸端點(diǎn)分別為A、B,從此橢圓上一點(diǎn)M向x軸作垂線,恰好通過(guò)橢圓的左焦點(diǎn)F1,向量$\overrightarrow{AB}$與$\overrightarrow{OM}$是共線向量.
(1)求橢圓的離心率e;
(2)設(shè)Q是橢圓上任意一點(diǎn),F(xiàn)1、F2分別是左、右焦點(diǎn),求∠F1QF2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為8,離心率是方程2x2-5x+2=0的一個(gè)解.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)E(0,1),問(wèn)是否存在不平行F1F2的直線l與橢圓C交于M、N兩點(diǎn)且|ME|=|NE|,若存在,求出直線l斜率的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列說(shuō)法正確的是(  )
A.“若$\overrightarrow a•\overrightarrow b=0$,則$\overrightarrow a⊥\overrightarrow b$”的否命題是“若$\overrightarrow a•\overrightarrow b≠0$,則$\overrightarrow a⊥\overrightarrow b$”
B.命題“對(duì)?x∈R,恒有x2+1>0”的否定是“?x0∈R,使得$x_0^2+1≤0$”
C.?m∈R,使函數(shù)f(x)=x2+mx(x∈R)是奇函數(shù)
D.設(shè)p,q是簡(jiǎn)單命題,若p∨q是真命題,則p∧q也是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.△ABC中,角A,B,C,所對(duì)的邊分別是a,b,c,其中b=2,cosA=$\frac{1}{3}$.
(1)若a=3,求邊c;
(2)若$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,且|$\overrightarrow{AD}$|=$\frac{4\sqrt{2}}{3}$,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)a+b=1,b>0,則$\frac{1}{2|a|}+\frac{|a|}$的最小值為( 。
A.$\sqrt{2}+\frac{1}{2}$B.$\sqrt{2}-\frac{1}{2}$C.$\frac{5}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知bcosC+ccosB=2b,則$\frac{a}$=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案