【題目】已知函數(shù)f (x)(a≠0)

1)當(dāng)a=-1,b0時(shí),求函數(shù)f (x)的極值;

2)當(dāng)b1時(shí),若函數(shù)f (x)沒(méi)有零點(diǎn),求實(shí)數(shù)a的取值范圍.

【答案】1)極小值為,無(wú)極大值; 2 .

【解析】

1)當(dāng)時(shí),求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,結(jié)合函數(shù)極值的定義,即可求解;

2)把函數(shù)沒(méi)有零點(diǎn),轉(zhuǎn)化為方程axaex0無(wú)實(shí)根,令,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,列出不等式,即可求解.

1)當(dāng)時(shí),函數(shù),則,

當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),單調(diào)遞增.

所以的極小值為,無(wú)極大值.

2)當(dāng)時(shí),函數(shù),

因?yàn)楹瘮?shù)沒(méi)有零點(diǎn),即方程無(wú)實(shí)根,即axaex0無(wú)實(shí)根,

,則,

時(shí),則R上單調(diào)遞增, 此時(shí)存在,使得,不合題意;

時(shí),令,即,得;

,得,

所以當(dāng),函數(shù)取得最小值,最小值為

要使得函數(shù)沒(méi)有零點(diǎn),則滿(mǎn)足,即,

解得

綜上所述,實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為,且橢圓過(guò)點(diǎn),直線(xiàn)與圓: 相切,且與橢圓相交于兩點(diǎn).

1)求橢圓的方程;

2)求三角形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了50名男顧客和50名女顧客,每位顧客對(duì)該商場(chǎng)的服務(wù)給出滿(mǎn)意或不滿(mǎn)意的評(píng)價(jià),得到下面列聯(lián)表:

滿(mǎn)意

不滿(mǎn)意

男顧客

40

10

女顧客

30

20

1)分別估計(jì)男、女顧客對(duì)該商場(chǎng)服務(wù)滿(mǎn)意的概率;

2)能否有的把握認(rèn)為男、女顧客對(duì)該商場(chǎng)服務(wù)的評(píng)價(jià)有差異?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)討論的單調(diào)性;

(2)若有三個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市工業(yè)部門(mén)計(jì)劃對(duì)所轄中小型企業(yè)推行節(jié)能降耗技術(shù)改造,下面是對(duì)所轄企業(yè)是否支持技術(shù)改造進(jìn)行的問(wèn)卷調(diào)查的結(jié)果:

支持

不支持

合計(jì)

中型企業(yè)

40

小型企業(yè)

240

合計(jì)

560

已知從這560家企業(yè)中隨機(jī)抽取1家,抽到支持技術(shù)改造的企業(yè)的概率為.

(1)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)!庇嘘P(guān)?

(2)從支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出8家企業(yè),然后從這8家企業(yè)選出2家進(jìn)行獎(jiǎng)勵(lì),分別獎(jiǎng)勵(lì)中型企業(yè)20萬(wàn)元,小型企業(yè)10萬(wàn)元.求獎(jiǎng)勵(lì)總金額為20萬(wàn)元的概率.

附:

0.05

0.025

0.01

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高三年級(jí)有400名學(xué)生參加某項(xiàng)體育測(cè)試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,整理得到如下頻率分布直方圖:

1)若該樣本中男生有55人,試估計(jì)該學(xué)校高三年級(jí)女生總?cè)藬?shù);

2)若規(guī)定小于60分為“不及格”,從該學(xué)校高三年級(jí)學(xué)生中隨機(jī)抽取一人,估計(jì)該學(xué)生不及格的概率;

3)若規(guī)定分?jǐn)?shù)在為“良好”,為“優(yōu)秀”.用頻率估計(jì)概率,從該校高三年級(jí)隨機(jī)抽取三人,記該項(xiàng)測(cè)試分?jǐn)?shù)為“良好”或“優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD平面CDE,H是BE的中點(diǎn),G是AE,DF的交點(diǎn)

(1)求證:GH平面CDE;

(2)求證:面ADEF面ABCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿(mǎn)足.

(1)求函數(shù)f(x)g(x)的表達(dá)式;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍;

(3)若方程上恰有一個(gè)實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交通部門(mén)調(diào)查在高速公路上的平均車(chē)速情況,隨機(jī)抽查了60名家庭轎車(chē)駕駛員,統(tǒng)計(jì)其中有40名男性駕駛員,其中平均車(chē)速超過(guò)的有30人,不超過(guò)的有10人;在其余20名女性駕駛員中,平均車(chē)速超過(guò)的有5人,不超過(guò)的有15.

1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為,家庭轎車(chē)平均車(chē)速超過(guò)與駕駛員的性別有關(guān);

平均車(chē)速超過(guò)的人數(shù)

平均車(chē)速不超過(guò)的人數(shù)

合計(jì)

男性駕駛員

女性駕駛員

合計(jì)

2)根據(jù)這些樣本數(shù)據(jù)來(lái)估計(jì)總體,隨機(jī)調(diào)查3輛家庭轎車(chē),記這3輛車(chē)中,駕駛員為女性且平均車(chē)速不超過(guò)的人數(shù)為,假定抽取的結(jié)果相互獨(dú)立,求的分布列和數(shù)學(xué)期望.

參考公式:

臨界值表:

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案