5.已知三棱錐ABCD的棱長(zhǎng)都相等,E是AB的中點(diǎn),則異面直線CE與BD所成角的余弦值為( 。
A.$\frac{1}{6}$B.$\frac{\sqrt{3}}{6}$C.$\frac{1}{3}$D.$\frac{\sqrt{3}}{3}$

分析 由題意:三棱錐ABCD的棱長(zhǎng)都相等,可知該幾何體是正三棱錐.題目要求解的是兩條異面直線所成角的余弦值,且給出了棱AB的中點(diǎn)E,可以想到再找AD的中點(diǎn)F,連接兩中點(diǎn)EF,得到EF∥BD,則直線CE與直線BD所成角轉(zhuǎn)化為直線CE與直線EF所成角,在三角形CEF中運(yùn)用余弦定理可求∠CEF的余弦值,則直線CE與直線BD所成角的余弦值可求.

解答 解:如圖,取AD中點(diǎn)F,連接EF,因?yàn)镋、F分別為AB、AD的中點(diǎn),
則EF為三角形ABD的中位線,所以EF∥BD,
所以直線EF與CE所成的角即為直線CE與直線BD所成角,
因?yàn)槿忮FA-BCD的棱長(zhǎng)全相等,設(shè)棱長(zhǎng)為2a,則EF=a,
在等邊三角形ABC中,因?yàn)镕為AD的中點(diǎn),所以CF為邊AD上的高,
所以CF=$\sqrt{A{C}^{2}-A{F}^{2}}=\sqrt{4{a}^{2}-{a}^{2}}=\sqrt{3}a$
同理∴CF=CE=$\sqrt{3}a$
在三角形CEF中:cos∠CEF=$\frac{F{E}^{2}+C{E}^{2}-C{F}^{2}}{2FE•CE}$=$\frac{\sqrt{3}}{6}$.
所以,直線CE與直線BD所成角的余弦值為$\frac{\sqrt{3}}{6}$.
故選B.

點(diǎn)評(píng) 本題考查空間點(diǎn)、線、面的位置關(guān)系及學(xué)生的空間想象能力、求異面直線角的能力.在立體幾何中找平行線是解決問(wèn)題的一個(gè)重要技巧,這個(gè)技巧就是通過(guò)三角形的中位線找平行線,如果試題的已知中涉及到多個(gè)中點(diǎn),則找中點(diǎn)是出現(xiàn)平行線的關(guān)鍵技巧,此題是中低檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}(x+1),x∈(-1,1)\\-{x^2}+4x-4,x∈[1,+∞)\end{array}$
(1)在給定直角坐標(biāo)系內(nèi)直接畫出f(x)的草圖(不用列表描點(diǎn)),并由圖象寫出函數(shù) f(x)的單調(diào)減區(qū)間;
(2)當(dāng)m為何值時(shí)f(x)+m=0有三個(gè)不同的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,D為BC邊上的動(dòng)點(diǎn),且AD=3,B=$\frac{π}{3}$.
(1)若cos∠ADC=$\frac{1}{3}$,求AB的值;
(2)令∠BAD=θ,用θ表示△ABD的周長(zhǎng)f(θ),并求當(dāng)θ取何值時(shí),周長(zhǎng)f(θ)取到最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知等差數(shù)列{an}滿足a1+a2=3,a4-a3=1.設(shè)等比數(shù)列{bn}且b2=a4,b3=a8
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an+bn,求數(shù)列{cn}前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$),其導(dǎo)函數(shù)f'(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為(  )
A.$f(x)=cos(2x-\frac{π}{6})$B.$f(x)=sin(2x+\frac{π}{6})$C.$f(x)=\frac{1}{2}cos(2x+\frac{π}{6})$D.$f(x)=\frac{1}{2}sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x|x2>1},B={-2,-1,0,2},則A∩B=(  )
A.{0,-1}B.{-2,-1}C.{-2,2}D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.等比數(shù)列{an}中,a1=3,a4=24,則數(shù)列{$\frac{1}{a_n}$}的前5項(xiàng)和為(  )
A.$\frac{19}{25}$B.$\frac{25}{36}$C.$\frac{31}{48}$D.$\frac{49}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+acosx+b,(a,b∈R)且均為常數(shù)).
(1)求函數(shù)f(x)的最小正周期;
(2)若f(x)在區(qū)間[-$\frac{π}{3}$,0]上單調(diào)遞增,且恰好能夠取到f(x)的最小值2,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.把四個(gè)不同的小球分別標(biāo)上1~4的標(biāo)號(hào),放入三個(gè)分別標(biāo)有1~3號(hào)的盒子中,不許有空盒子,且任意一個(gè)小球都不能放入標(biāo)有相同標(biāo)號(hào)的盒子中,則不同的放法共有12種.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案