19.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0)的部分圖象如圖所示,則函數(shù)f(x)的一個單調(diào)遞增區(qū)間是( 。
A.[-$\frac{π}{12}$,$\frac{5π}{12}$]B.[-$\frac{7π}{12}$,-$\frac{1}{12}$π]C.[-$\frac{π}{12}$,$\frac{7π}{12}$]D.[-$\frac{7π}{12}$,$\frac{5π}{12}$]

分析 由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式;再利用正弦函數(shù)的增區(qū)間,求得函數(shù)f(x)的一個單調(diào)遞增區(qū)間.

解答 解:由函數(shù)f(x)=2sin(ωx+φ)(ω>0)的部分圖象可得A=2,$\frac{1}{4}•\frac{2π}{ω}$=$\frac{2π}{3}$-$\frac{5π}{12}$,∴ω=2.
再根據(jù)五點法作圖可得2•$\frac{5π}{12}$+φ=$\frac{π}{2}$,∴φ=-$\frac{π}{3}$,∴f(x)=2sin(2x-$\frac{π}{3}$).
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,
當(dāng)k=0時,f(x)的一個單調(diào)遞增區(qū)間是[-$\frac{π}{12}$,$\frac{5π}{12}$],
故選:A.

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,正弦函數(shù)的增區(qū)間,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow m$=(1,-2),$\overrightarrow n$=(1,1),且向量$\overrightarrow m$與$\overrightarrow m$+λ$\overrightarrow n$垂直,則λ=( 。
A.$\frac{5}{3}$B.-$\frac{5}{3}$C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow{a}$=(-2,2),$\overrightarrow$=(x,-3),若$\overrightarrow{a}$⊥$\overrightarrow$,則x的值為( 。
A.3B.1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.給出以下命題:
(1)直線l:y=k(x-3)與雙曲線$\frac{x^2}{4}$-$\frac{y^2}{5}$=1交于A,B兩點,若|AB|=5,則這樣的直線有3條;
(2)已知空間任意一點O和不共線的三點A,B,C,若$\overrightarrow{OP}$=$\frac{1}{6}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$,則P,A,B,C四點共面;
(3)已知空間任意一點O和不共線的三點A,B,C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$+2$\overrightarrow{OC}$,則P,A,B,C四點一定不共面;
(4)直線θ=$\frac{π}{3}$(ρ∈R)與曲線ρ=$\frac{1}{1-2cosθ}$(ρ∈R)沒有公共點.
其中,真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.cos75°cos15°-sin435°sin15°的值是( 。
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$\overrightarrow{a}$=(2+sinx,1),$\overrightarrow$=(2,-2),$\overrightarrow{c}$=(sinx-3,1),$\overrightarrowrnb77lv$=(1,k)(x,k∈R)
(1)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$],且$\overrightarrow{a}$∥($\overrightarrow$+$\overrightarrow{c}$),求x的值;
(2)若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,求f(x)的最小值;
(3)是否存在實數(shù)k,使得($\overrightarrow{a}$+$\overrightarrowvzp937f$)⊥($\overrightarrow$+$\overrightarrow{c}$)?若存在,求出k的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若將復(fù)數(shù)$\frac{2+i}{1-2i}$表示為a+bi(a,b∈R,i是虛數(shù)單位)的形式,則a+b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等差數(shù)列{an}滿足a5=9,a10=19,則a2016=( 。
A.4030B.4033C.4032D.4031

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求y=cos2x-sinx-3的值域.

查看答案和解析>>

同步練習(xí)冊答案