【題目】必修四第一章我們借助圓的對稱性學(xué)習(xí)了誘導(dǎo)公式,如在直觀上講單位圓中,當兩個角的終邊關(guān)于軸對稱時,這兩個角的正弦值相等;再如在單位圓中,當兩個角的終邊關(guān)于原點中心對稱時,這兩個角的正弦值互為相反數(shù).觀察這些誘導(dǎo)公式,可以發(fā)現(xiàn)它們都是特殊角與任意角的三角函數(shù)的恒等關(guān)系.我們?nèi)绻麑⑻厥饨菗Q為任意角,那么任意角的和(或差)的三角函數(shù)與,的三角函數(shù)會有什么關(guān)系呢?如果已知,的正弦余弦,能由此推出的正弦余弦嗎?下面是某高一學(xué)生在老師的指導(dǎo)下自行探究與角的正弦余弦之間的關(guān)系的部分過程,請你順著這位同學(xué)的思路以及老師的提示將探究過程完善,并完成后面的題目.探究過程如下:

不妨令如圖,設(shè)單位圓與軸的正半軸相交于點軸的非負半軸為始邊作角它們的終邊分別與單位圓相交于點連接若把扇形繞著點旋轉(zhuǎn)角,則點分別與點重合. ……(未完待續(xù))

(提示一:任意一個圓繞著其圓心旋轉(zhuǎn)任意角后都與原來的圓重合,這一性質(zhì)叫做圓的旋轉(zhuǎn)對稱性)(提示二:平面上任意兩點間的距離公式)

1)完善上述探究過程;

2)利用(1)中的結(jié)論解決問題:已知是第三象限角,求的值.

【答案】1)見解析;(2.

【解析】

1)根據(jù),利用兩點間的距離公式,即可得到答案;

2)分別求出,再利用(1)中結(jié)論,即可得到答案;

1

,

整理得:;

(2)是第三象限角,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個相同的小球放到三個編號為的盒子中,且每個盒子內(nèi)的小球數(shù)要多于盒子的編號數(shù),則共有多少種放法( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左.右焦點為,離心率為.直線軸,軸分別交于點,是直線與橢圓的一個公共點,是點關(guān)于直線的對稱點,設(shè).

1)證明:;

2)若的周長為;寫出橢圓的方程;

3)確定的值,使得是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】()(2017·衡水二模)某商場在元旦舉行購物抽獎促銷活動,規(guī)定顧客從裝有編號0,1,2,3,4的五個相同小球的抽獎箱中一次任意摸出兩個小球,若取出的兩個小球的編號之和等于7則中一等獎,等于65則中二等獎,等于4則中三等獎,其余結(jié)果為不中獎.

(1)求中二等獎的概率.

(2)求不中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,三個內(nèi)角,所對的邊分別是,

1)證明:

2)在①,②,③這三個條件中任選一個補充在下面問題中,并解答

,________,求的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年某市有2萬多文科考生參加高考,除去成績?yōu)?/span>分(含分)以上的3人與成績?yōu)?/span>分(不含分)以下的3836人,還有約1.9萬文科考生的成績集中在內(nèi),其成績的頻率分布如下表所示:

分數(shù)段

頻率

0.108

0.133

0.161

0.183

分數(shù)段

頻率

0.193

0.154

0.061

0.007

(Ⅰ)試估計該次高考成績在內(nèi)文科考生的平均分(精確到);

(Ⅱ)一考生填報志愿后,得知另外有4名同分數(shù)考生也填報了該志愿.若該志愿計劃錄取3人,并在同分數(shù)考生中隨機錄取,求該考生不被該志愿錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生在開學(xué)季準備銷售一種文具盒進行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤30元,未售出的產(chǎn)品,每盒虧損10元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個開學(xué)季購進了160盒該產(chǎn)品,以(單位:盒, )表示這個開學(xué)季內(nèi)的市場需求量, (單位:元)表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.

(1)根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量的平均數(shù);

(2)將表示為的函數(shù);

(3)根據(jù)直方圖估計利潤不少于4000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下四種變換方式:

向左平移個單位長度,再把所得各點的橫坐標縮短到原來的縱坐標不變

向左平移個單位長度,再把所得各點的橫坐標縮短到原來的縱坐標不變;

把各點的橫坐標縮短到原來的縱坐標不變,再向左平移個單位長度;

把各點的橫坐標縮短到原來的縱坐標不變,再向左平移個單位長度;

其中能將函數(shù)的圖象變?yōu)楹瘮?shù)的圖象的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,坐標原點為.橢圓的動弦過右焦點且不垂直于坐標軸, 的中點為,過且垂直于線段的直線交射線于點

(I)證明:點在直線上;

(Ⅱ)當四邊形是平行四邊形時,求的面積.

查看答案和解析>>

同步練習(xí)冊答案