【題目】必修四第一章我們借助圓的對稱性學(xué)習(xí)了誘導(dǎo)公式,如在直觀上講單位圓中,當(dāng)兩個(gè)角的終邊關(guān)于軸對稱時(shí),這兩個(gè)角的正弦值相等;再如在單位圓中,當(dāng)兩個(gè)角的終邊關(guān)于原點(diǎn)中心對稱時(shí),這兩個(gè)角的正弦值互為相反數(shù).觀察這些誘導(dǎo)公式,可以發(fā)現(xiàn)它們都是特殊角與任意角的三角函數(shù)的恒等關(guān)系.我們?nèi)绻麑⑻厥饨菗Q為任意角,那么任意角的和(或差)的三角函數(shù)與,的三角函數(shù)會有什么關(guān)系呢?如果已知,的正弦余弦,能由此推出的正弦余弦嗎?下面是某高一學(xué)生在老師的指導(dǎo)下自行探究與角的正弦余弦之間的關(guān)系的部分過程,請你順著這位同學(xué)的思路以及老師的提示將探究過程完善,并完成后面的題目.探究過程如下:

不妨令如圖,設(shè)單位圓與軸的正半軸相交于點(diǎn)軸的非負(fù)半軸為始邊作角它們的終邊分別與單位圓相交于點(diǎn)連接若把扇形繞著點(diǎn)旋轉(zhuǎn)角,則點(diǎn)分別與點(diǎn)重合. ……(未完待續(xù))

(提示一:任意一個(gè)圓繞著其圓心旋轉(zhuǎn)任意角后都與原來的圓重合,這一性質(zhì)叫做圓的旋轉(zhuǎn)對稱性)(提示二:平面上任意兩點(diǎn)間的距離公式)

1)完善上述探究過程;

2)利用(1)中的結(jié)論解決問題:已知是第三象限角,求的值.

【答案】1)見解析;(2.

【解析】

1)根據(jù),利用兩點(diǎn)間的距離公式,即可得到答案;

2)分別求出,再利用(1)中結(jié)論,即可得到答案;

1

,

整理得:;

(2)是第三象限角,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】個(gè)相同的小球放到三個(gè)編號為的盒子中,且每個(gè)盒子內(nèi)的小球數(shù)要多于盒子的編號數(shù),則共有多少種放法( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左.右焦點(diǎn)為,離心率為.直線軸,軸分別交于點(diǎn),是直線與橢圓的一個(gè)公共點(diǎn),是點(diǎn)關(guān)于直線的對稱點(diǎn),設(shè).

1)證明:;

2)若的周長為;寫出橢圓的方程;

3)確定的值,使得是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】()(2017·衡水二模)某商場在元旦舉行購物抽獎促銷活動,規(guī)定顧客從裝有編號0,1,2,3,4的五個(gè)相同小球的抽獎箱中一次任意摸出兩個(gè)小球,若取出的兩個(gè)小球的編號之和等于7則中一等獎,等于65則中二等獎,等于4則中三等獎,其余結(jié)果為不中獎.

(1)求中二等獎的概率.

(2)求不中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,三個(gè)內(nèi)角,,所對的邊分別是,,

1)證明:;

2)在①,②,③這三個(gè)條件中任選一個(gè)補(bǔ)充在下面問題中,并解答

,,________,求的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年某市有2萬多文科考生參加高考,除去成績?yōu)?/span>分(含分)以上的3人與成績?yōu)?/span>分(不含分)以下的3836人,還有約1.9萬文科考生的成績集中在內(nèi),其成績的頻率分布如下表所示:

分?jǐn)?shù)段

頻率

0.108

0.133

0.161

0.183

分?jǐn)?shù)段

頻率

0.193

0.154

0.061

0.007

(Ⅰ)試估計(jì)該次高考成績在內(nèi)文科考生的平均分(精確到);

(Ⅱ)一考生填報(bào)志愿后,得知另外有4名同分?jǐn)?shù)考生也填報(bào)了該志愿.若該志愿計(jì)劃錄取3人,并在同分?jǐn)?shù)考生中隨機(jī)錄取,求該考生不被該志愿錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤30元,未售出的產(chǎn)品,每盒虧損10元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季購進(jìn)了160盒該產(chǎn)品,以(單位:盒, )表示這個(gè)開學(xué)季內(nèi)的市場需求量, (單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.

(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場需求量的平均數(shù);

(2)將表示為的函數(shù);

(3)根據(jù)直方圖估計(jì)利潤不少于4000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下四種變換方式:

向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的縱坐標(biāo)不變;

向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的縱坐標(biāo)不變;

把各點(diǎn)的橫坐標(biāo)縮短到原來的縱坐標(biāo)不變,再向左平移個(gè)單位長度;

把各點(diǎn)的橫坐標(biāo)縮短到原來的縱坐標(biāo)不變,再向左平移個(gè)單位長度;

其中能將函數(shù)的圖象變?yōu)楹瘮?shù)的圖象的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,坐標(biāo)原點(diǎn)為.橢圓的動弦過右焦點(diǎn)且不垂直于坐標(biāo)軸, 的中點(diǎn)為,過且垂直于線段的直線交射線于點(diǎn)

(I)證明:點(diǎn)在直線上;

(Ⅱ)當(dāng)四邊形是平行四邊形時(shí),求的面積.

查看答案和解析>>

同步練習(xí)冊答案