精英家教網 > 高中數學 > 題目詳情

【題目】已知函數).

)討論函數的單調性.

)設,若,都有 成立,求的取值范圍.

【答案】見解析

【解析】 ………………1分

時:令 ………………2分

(1)當時,,此時令,得;令,得

(2)當時,,

(3)當時,,此時令,得;令,得 ………5分

時:令,得;令,得 ………………5分

綜上,當時,的單調遞增區(qū)間,的單調遞減區(qū)間;當時,的單調遞增區(qū)間,,的單調遞減區(qū)間;當時,上為增函數;當時,的單調遞增區(qū)間,的單調遞減區(qū)間. 6分

()由題意得………………7分

,則................8分

時,成立,則上單調遞增,則

所以,則在上,單調遞增,所以,即...............10分

命題,都有 成立等價于命題 成立,

所以所求命題變?yōu)?/span>, 恒成立,即

化簡分離參數得恒成立,...............12分

,只需即可,

,函數有唯一極小值為,則

所以 . ………………14分

【命題意圖】本題主要考查導數與函數的最值、導數與函數的單調性、不等式恒成立以及函數的定義域等,考查分離參數法、函數與方程的思想、分類討論思想以及基本的運算能力和邏輯推理能力等,是較難題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數y= ﹣(x+1)0的定義域為(
A.(﹣1, ]
B.(﹣1, )??
C.(﹣∞,﹣1)∪(﹣1, ]
D.[ ,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】關于函數f(x)=lg (x≠0,x∈R)有下列命題:
①函數y=f(x)的圖象關于y軸對稱;
②在區(qū)間(﹣∞,0)上,函數y=f(x)是減函數;
③函數f(x)的最小值為lg2;
④在區(qū)間(1,+∞)上,函數f(x)是增函數.
其中正確命題序號為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為偶函數.

(1)求實數的值;

(2)記集合 , ,判斷的關系;

(3)當 (m>0,n>0)時,若函數f(x)的值域為[2-3m,2-3n],求m,n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,函數.

(1)求的定義域及其零點;

(2)討論并用函數單調性定義證明函數在定義域上的單調性;

(3)設,當時,若對任意,存在,使得,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設G為△ABC的重心,過G作直線l分別交線段AB,AC(不與端點重合)于P,Q.若 ,

(1)求 的值;
(2)求λμ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,平面平面,四邊形是菱形,四邊形是矩形,,的中點.

(Ⅰ)求證:平面;

(II)在線段上是否存在,使三棱錐的體積為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列關于回歸分析的說法中錯誤的是( )

A. 回歸直線一定過樣本中心

B. 殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適

C. 兩個模型中殘差平方和越小的模型擬合的效果越好

D. 甲、乙兩個模型的分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中,正確的個數是( )

①函數的零點有2個;

②函數的最小正周期是

③命題“函數處有極值,則”的否命題是真命題;

.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習冊答案