1.連擲兩次骰子得到點(diǎn)數(shù)分別為m和n,記向量$\overrightarrow a$=(m,n),向量$\overrightarrow b$=(1,-1)
(1)記$\overrightarrow a$⊥$\overrightarrow b$為事件A,求事件A發(fā)生的概率;
(2)若$\overrightarrow a$與$\overrightarrow b$的夾角為θ,記θ∈(0,$\frac{π}{2}$)為事件B,求事件B發(fā)生的概率.

分析 (1)根據(jù)向量$\overrightarrow a$=(m,n),向量$\overrightarrow b$=(1,-1),求出$\overrightarrow a$•$\overrightarrow b$=m-n,$\overrightarrow a$⊥$\overrightarrow b$時(shí)m=n,算出事件個(gè)數(shù),運(yùn)用古典概率公式求解.
(2)θ∈(0,$\frac{π}{2}$),$\overrightarrow a$•$\overrightarrow b$>0,判斷出m>n,算出事件個(gè)數(shù),運(yùn)用古典概率公式求解.

解答 解:(1)∵連擲兩次骰子得到點(diǎn)數(shù)分別為m和n,
向量$\overrightarrow a$=(m,n),向量$\overrightarrow b$=(1,-1),$\overrightarrow a$⊥$\overrightarrow b$
∴$\overrightarrow a$•$\overrightarrow b$=m-n=0,
∴總共的事件有36個(gè),符合題意的有6個(gè),
∴P(A)=$\frac{6}{36}$=$\frac{1}{6}$;
(2)∵θ∈(0,$\frac{π}{2}$),
∴$\overrightarrow a$•$\overrightarrow b$>0,即m-n>0,m>n,∵m,n∈[1,6]的整數(shù).
總共的事件有36個(gè),符合題意的有15個(gè),
根據(jù)古典概率公式得:$\frac{15}{36}$=$\frac{5}{12}$.

點(diǎn)評(píng) 本題考察了向量的數(shù)量積的運(yùn)算,古典概率的求解,難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知a>0,且對(duì)一切x≥0,有eax-ax2≥0,則a的取值范圍是[$\frac{4}{{e}^{2}}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若不等式|x-1|+|2x+2|≥a2+$\frac{1}{2}$a+2對(duì)任意實(shí)數(shù)x都成立,則實(shí)數(shù)a的取值范圍為$[-\frac{1}{2},0]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.5 個(gè)人站成一排,甲乙兩人必須站在一起的不同站法有(  )
A.12 種B.24 種C.48 種D.60 種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖1,矩形ABCD中,AB=12,AD=6,E、F分別為CD、AB邊上的點(diǎn),且DE=3,BF=4,將△BCE沿BE折起至△PBE位置(如圖2所示),連結(jié)AP、PF,其中PF=2$\sqrt{5}$.

(1)求證:PF⊥平面ABED;
(2)求點(diǎn)A到平面PBE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)y=tan($\frac{x}{2}$+$\frac{π}{3}$)的定義域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.△ABC中,A(-4,0),B(4,0),且sinA-sinB=$\frac{1}{2}$sinC,則頂點(diǎn)C的軌跡方程是( 。
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x>2)B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x<-2)
C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>2)D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若$\frac{x+2}{3x-5}$<0,化簡$\sqrt{25-30x+9{x^2}}-\sqrt{{{(x+2)}^2}}$-3的結(jié)果為-4x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,AB是圓O的直徑,延長BA至C,使AC=$\frac{1}{3}$BC,過C作圓O的切割線交圓O于M、N兩點(diǎn),且AM=MN.
(1)證明:∠AOM=∠ABN;
(2)若MN=2,求AN的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案